Metamath Proof Explorer


Theorem axc16nf

Description: If dtru is false, then there is only one element in the universe, so everything satisfies F/ . (Contributed by Mario Carneiro, 7-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 9-Sep-2018) (Proof shortened by BJ, 14-Jun-2019) Remove dependency on ax-10 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion axc16nf
|- ( A. x x = y -> F/ z ph )

Proof

Step Hyp Ref Expression
1 axc16g
 |-  ( A. x x = y -> ( -. ph -> A. z -. ph ) )
2 eximal
 |-  ( ( E. z ph -> ph ) <-> ( -. ph -> A. z -. ph ) )
3 1 2 sylibr
 |-  ( A. x x = y -> ( E. z ph -> ph ) )
4 axc16g
 |-  ( A. x x = y -> ( ph -> A. z ph ) )
5 3 4 syld
 |-  ( A. x x = y -> ( E. z ph -> A. z ph ) )
6 5 nfd
 |-  ( A. x x = y -> F/ z ph )