Metamath Proof Explorer


Theorem axcc

Description: Although CC can be proven trivially using ac5 , we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion axcc ( 𝑥 ≈ ω → ∃ 𝑓𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥 ∖ { ∅ } ) = ( 𝑥 ∖ { ∅ } )
2 eqid ( 𝑡 ∈ ω , 𝑦 ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑣𝑡 ) ) = ( 𝑡 ∈ ω , 𝑦 ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑣𝑡 ) )
3 eqid ( 𝑤 ∈ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑢 ‘ suc ( 𝑣𝑤 ) ) ) = ( 𝑤 ∈ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑢 ‘ suc ( 𝑣𝑤 ) ) )
4 1 2 3 axcclem ( 𝑥 ≈ ω → ∃ 𝑓𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) )