Description: Although CC can be proven trivially using ac5 , we prove it here using DC. (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axcc | ⊢ ( 𝑥 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝑥 ∖ { ∅ } ) = ( 𝑥 ∖ { ∅ } ) | |
2 | eqid | ⊢ ( 𝑡 ∈ ω , 𝑦 ∈ ∪ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑣 ‘ 𝑡 ) ) = ( 𝑡 ∈ ω , 𝑦 ∈ ∪ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑣 ‘ 𝑡 ) ) | |
3 | eqid | ⊢ ( 𝑤 ∈ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑢 ‘ suc ( ◡ 𝑣 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( 𝑥 ∖ { ∅ } ) ↦ ( 𝑢 ‘ suc ( ◡ 𝑣 ‘ 𝑤 ) ) ) | |
4 | 1 2 3 | axcclem | ⊢ ( 𝑥 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |