Step |
Hyp |
Ref |
Expression |
1 |
|
ac5.1 |
⊢ 𝐴 ∈ V |
2 |
|
fneq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑓 Fn 𝑦 ↔ 𝑓 Fn 𝐴 ) ) |
3 |
|
raleq |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
6 |
|
dfac4 |
⊢ ( CHOICE ↔ ∀ 𝑦 ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
7 |
6
|
axaci |
⊢ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
8 |
1 5 7
|
vtocl |
⊢ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |