Step |
Hyp |
Ref |
Expression |
1 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
2 |
|
fveq1 |
⊢ ( 𝑓 = 𝑦 → ( 𝑓 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑓 = 𝑦 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
6 |
5
|
cbvexvw |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
7 |
|
fvex |
⊢ ( 𝑦 ‘ 𝑤 ) ∈ V |
8 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) |
9 |
7 8
|
fnmpti |
⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑧 ) ) |
11 |
|
fvex |
⊢ ( 𝑦 ‘ 𝑧 ) ∈ V |
12 |
10 8 11
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
15 |
14
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
16 |
15
|
anbi2i |
⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
17 |
9 16
|
mpbiran |
⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) ) |
18 |
|
fvrn0 |
⊢ ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) |
19 |
18
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) |
20 |
8
|
fmpt |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) ∈ ( ran 𝑦 ∪ { ∅ } ) ↔ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) ) |
21 |
19 20
|
mpbi |
⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) |
22 |
|
vex |
⊢ 𝑥 ∈ V |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
23
|
rnex |
⊢ ran 𝑦 ∈ V |
25 |
|
p0ex |
⊢ { ∅ } ∈ V |
26 |
24 25
|
unex |
⊢ ( ran 𝑦 ∪ { ∅ } ) ∈ V |
27 |
|
fex2 |
⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) : 𝑥 ⟶ ( ran 𝑦 ∪ { ∅ } ) ∧ 𝑥 ∈ V ∧ ( ran 𝑦 ∪ { ∅ } ) ∈ V ) → ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ∈ V ) |
28 |
21 22 26 27
|
mp3an |
⊢ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ∈ V |
29 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( 𝑓 Fn 𝑥 ↔ ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ) ) |
30 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
34 |
29 33
|
anbi12d |
⊢ ( 𝑓 = ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
35 |
28 34
|
spcev |
⊢ ( ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝑤 ∈ 𝑥 ↦ ( 𝑦 ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
36 |
17 35
|
sylbir |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
37 |
36
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑦 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
38 |
6 37
|
sylbi |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
39 |
|
exsimpr |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
40 |
38 39
|
impbii |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
41 |
40
|
albii |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
42 |
1 41
|
bitri |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |