Metamath Proof Explorer


Theorem dfac4

Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of BellMachover p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion dfac4 CHOICExffFnxzxzfzz

Proof

Step Hyp Ref Expression
1 dfac3 CHOICExfzxzfzz
2 fveq1 f=yfz=yz
3 2 eleq1d f=yfzzyzz
4 3 imbi2d f=yzfzzzyzz
5 4 ralbidv f=yzxzfzzzxzyzz
6 5 cbvexvw fzxzfzzyzxzyzz
7 fvex ywV
8 eqid wxyw=wxyw
9 7 8 fnmpti wxywFnx
10 fveq2 w=zyw=yz
11 fvex yzV
12 10 8 11 fvmpt zxwxywz=yz
13 12 eleq1d zxwxywzzyzz
14 13 imbi2d zxzwxywzzzyzz
15 14 ralbiia zxzwxywzzzxzyzz
16 15 anbi2i wxywFnxzxzwxywzzwxywFnxzxzyzz
17 9 16 mpbiran wxywFnxzxzwxywzzzxzyzz
18 fvrn0 ywrany
19 18 rgenw wxywrany
20 8 fmpt wxywranywxyw:xrany
21 19 20 mpbi wxyw:xrany
22 vex xV
23 vex yV
24 23 rnex ranyV
25 p0ex V
26 24 25 unex ranyV
27 fex2 wxyw:xranyxVranyVwxywV
28 21 22 26 27 mp3an wxywV
29 fneq1 f=wxywfFnxwxywFnx
30 fveq1 f=wxywfz=wxywz
31 30 eleq1d f=wxywfzzwxywzz
32 31 imbi2d f=wxywzfzzzwxywzz
33 32 ralbidv f=wxywzxzfzzzxzwxywzz
34 29 33 anbi12d f=wxywfFnxzxzfzzwxywFnxzxzwxywzz
35 28 34 spcev wxywFnxzxzwxywzzffFnxzxzfzz
36 17 35 sylbir zxzyzzffFnxzxzfzz
37 36 exlimiv yzxzyzzffFnxzxzfzz
38 6 37 sylbi fzxzfzzffFnxzxzfzz
39 exsimpr ffFnxzxzfzzfzxzfzz
40 38 39 impbii fzxzfzzffFnxzxzfzz
41 40 albii xfzxzfzzxffFnxzxzfzz
42 1 41 bitri CHOICExffFnxzxzfzz