| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) | 
						
							| 2 | 1 | 3anim3i | ⊢ ( ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) )  →  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) ) | 
						
							| 3 | 2 | anim2i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) ) )  →  ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) ) ) | 
						
							| 4 |  | simpr3l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) ) )  →  𝑎  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | axcontlem12 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 7 | 6 | 3exp2 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( 𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) ) ) | 
						
							| 8 | 7 | com4r | ⊢ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 )  →  ( 𝑁  ∈  ℕ  →  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( 𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) ) ) | 
						
							| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑎  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉  →  ( 𝑁  ∈  ℕ  →  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( 𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) ) ) | 
						
							| 10 | 9 | com4l | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( 𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  →  ( ∃ 𝑎  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) ) ) | 
						
							| 11 | 10 | 3imp2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∃ 𝑎  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑎 ,  𝑦 〉 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) |