| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rzal | ⊢ ( 𝐵  =  ∅  →  ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 2 | 1 | ralrimivw | ⊢ ( 𝐵  =  ∅  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑏  =  𝑍  →  ( 𝑏  Btwn  〈 𝑥 ,  𝑦 〉  ↔  𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 4 | 3 | 2ralbidv | ⊢ ( 𝑏  =  𝑍  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 5 | 4 | rspcev | ⊢ ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 6 | 5 | expcom | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉  →  ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝐵  =  ∅  →  ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 8 | 7 | adantld | ⊢ ( 𝐵  =  ∅  →  ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 9 | 8 | adantld | ⊢ ( 𝐵  =  ∅  →  ( ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 10 |  | simprrl | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) ) ) | 
						
							| 11 |  | simprrr | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 12 |  | simprll | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  𝑢  ∈  𝐴 ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  𝐵  ≠  ∅ ) | 
						
							| 14 | 11 12 13 | 3jca | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑢  ∈  𝐴  ∧  𝐵  ≠  ∅ ) ) | 
						
							| 15 |  | simprlr | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  𝑍  ≠  𝑢 ) | 
						
							| 16 |  | axcontlem11 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑢  ∈  𝐴  ∧  𝐵  ≠  ∅ )  ∧  𝑍  ≠  𝑢 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 17 | 10 14 15 16 | syl12anc | ⊢ ( ( 𝐵  ≠  ∅  ∧  ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝐵  ≠  ∅  →  ( ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 19 | 9 18 | pm2.61ine | ⊢ ( ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  ∧  ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝑢  ∈  𝐴  ∧  𝑍  ≠  𝑢 )  →  ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 21 | 20 | rexlimiva | ⊢ ( ∃ 𝑢  ∈  𝐴 𝑍  ≠  𝑢  →  ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 22 |  | df-ne | ⊢ ( 𝑍  ≠  𝑢  ↔  ¬  𝑍  =  𝑢 ) | 
						
							| 23 | 22 | con2bii | ⊢ ( 𝑍  =  𝑢  ↔  ¬  𝑍  ≠  𝑢 ) | 
						
							| 24 | 23 | ralbii | ⊢ ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ↔  ∀ 𝑢  ∈  𝐴 ¬  𝑍  ≠  𝑢 ) | 
						
							| 25 |  | ralnex | ⊢ ( ∀ 𝑢  ∈  𝐴 ¬  𝑍  ≠  𝑢  ↔  ¬  ∃ 𝑢  ∈  𝐴 𝑍  ≠  𝑢 ) | 
						
							| 26 | 24 25 | bitri | ⊢ ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ↔  ¬  ∃ 𝑢  ∈  𝐴 𝑍  ≠  𝑢 ) | 
						
							| 27 |  | simpr3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) | 
						
							| 28 |  | eqeq2 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑍  =  𝑢  ↔  𝑍  =  𝑥 ) ) | 
						
							| 29 | 28 | rspccva | ⊢ ( ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  𝑥  ∈  𝐴 )  →  𝑍  =  𝑥 ) | 
						
							| 30 |  | opeq1 | ⊢ ( 𝑍  =  𝑥  →  〈 𝑍 ,  𝑦 〉  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 31 | 30 | breq2d | ⊢ ( 𝑍  =  𝑥  →  ( 𝑥  Btwn  〈 𝑍 ,  𝑦 〉  ↔  𝑥  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑍  =  𝑥  →  ( 𝑍  Btwn  〈 𝑥 ,  𝑦 〉  ↔  𝑥  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 33 | 31 32 | bitr4d | ⊢ ( 𝑍  =  𝑥  →  ( 𝑥  Btwn  〈 𝑍 ,  𝑦 〉  ↔  𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑍  =  𝑥  →  ( ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉  ↔  ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 35 | 29 34 | syl | ⊢ ( ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉  ↔  ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 36 | 35 | ralbidva | ⊢ ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 37 | 36 | biimpa | ⊢ ( ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 38 | 27 37 | sylan2 | ⊢ ( ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑍  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 39 | 38 5 | sylan2 | ⊢ ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) ) ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 40 | 39 | ancoms | ⊢ ( ( ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  ∧  ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 41 | 40 | expl | ⊢ ( ∀ 𝑢  ∈  𝐴 𝑍  =  𝑢  →  ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 42 | 26 41 | sylbir | ⊢ ( ¬  ∃ 𝑢  ∈  𝐴 𝑍  ≠  𝑢  →  ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 43 | 21 42 | pm2.61i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ⊆  ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  Btwn  〈 𝑍 ,  𝑦 〉 ) )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ∃ 𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑏  Btwn  〈 𝑥 ,  𝑦 〉 ) |