Metamath Proof Explorer


Theorem axcontlem12

Description: Lemma for axcont . Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Assertion axcontlem12 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )

Proof

Step Hyp Ref Expression
1 rzal ( 𝐵 = ∅ → ∀ 𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
2 1 ralrimivw ( 𝐵 = ∅ → ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
3 breq1 ( 𝑏 = 𝑍 → ( 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
4 3 2ralbidv ( 𝑏 = 𝑍 → ( ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ↔ ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
5 4 rspcev ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
6 5 expcom ( ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
7 2 6 syl ( 𝐵 = ∅ → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
8 7 adantld ( 𝐵 = ∅ → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
9 8 adantld ( 𝐵 = ∅ → ( ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
10 simprrl ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) )
11 simprrr ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) )
12 simprll ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑢𝐴 )
13 simpl ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝐵 ≠ ∅ )
14 11 12 13 3jca ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑢𝐴𝐵 ≠ ∅ ) )
15 simprlr ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → 𝑍𝑢 )
16 axcontlem11 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑢𝐴𝐵 ≠ ∅ ) ∧ 𝑍𝑢 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
17 10 14 15 16 syl12anc ( ( 𝐵 ≠ ∅ ∧ ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
18 17 ex ( 𝐵 ≠ ∅ → ( ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
19 9 18 pm2.61ine ( ( ( 𝑢𝐴𝑍𝑢 ) ∧ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
20 19 ex ( ( 𝑢𝐴𝑍𝑢 ) → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
21 20 rexlimiva ( ∃ 𝑢𝐴 𝑍𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
22 df-ne ( 𝑍𝑢 ↔ ¬ 𝑍 = 𝑢 )
23 22 con2bii ( 𝑍 = 𝑢 ↔ ¬ 𝑍𝑢 )
24 23 ralbii ( ∀ 𝑢𝐴 𝑍 = 𝑢 ↔ ∀ 𝑢𝐴 ¬ 𝑍𝑢 )
25 ralnex ( ∀ 𝑢𝐴 ¬ 𝑍𝑢 ↔ ¬ ∃ 𝑢𝐴 𝑍𝑢 )
26 24 25 bitri ( ∀ 𝑢𝐴 𝑍 = 𝑢 ↔ ¬ ∃ 𝑢𝐴 𝑍𝑢 )
27 simpr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ )
28 eqeq2 ( 𝑢 = 𝑥 → ( 𝑍 = 𝑢𝑍 = 𝑥 ) )
29 28 rspccva ( ( ∀ 𝑢𝐴 𝑍 = 𝑢𝑥𝐴 ) → 𝑍 = 𝑥 )
30 opeq1 ( 𝑍 = 𝑥 → ⟨ 𝑍 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
31 30 breq2d ( 𝑍 = 𝑥 → ( 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ↔ 𝑥 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
32 breq1 ( 𝑍 = 𝑥 → ( 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑥 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
33 31 32 bitr4d ( 𝑍 = 𝑥 → ( 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ↔ 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
34 33 ralbidv ( 𝑍 = 𝑥 → ( ∀ 𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ↔ ∀ 𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
35 29 34 syl ( ( ∀ 𝑢𝐴 𝑍 = 𝑢𝑥𝐴 ) → ( ∀ 𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ↔ ∀ 𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
36 35 ralbidva ( ∀ 𝑢𝐴 𝑍 = 𝑢 → ( ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ↔ ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
37 36 biimpa ( ( ∀ 𝑢𝐴 𝑍 = 𝑢 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) → ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
38 27 37 sylan2 ( ( ∀ 𝑢𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ) → ∀ 𝑥𝐴𝑦𝐵 𝑍 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
39 38 5 sylan2 ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( ∀ 𝑢𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
40 39 ancoms ( ( ( ∀ 𝑢𝐴 𝑍 = 𝑢 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )
41 40 expl ( ∀ 𝑢𝐴 𝑍 = 𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
42 26 41 sylbir ( ¬ ∃ 𝑢𝐴 𝑍𝑢 → ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) )
43 21 42 pm2.61i ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )