Metamath Proof Explorer


Theorem axcontlem11

Description: Lemma for axcont . Eliminate the hypotheses from axcontlem10 . (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Assertion axcontlem11 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈𝐴𝐵 ≠ ∅ ) ∧ 𝑍𝑈 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )

Proof

Step Hyp Ref Expression
1 opeq2 ( 𝑞 = 𝑝 → ⟨ 𝑍 , 𝑞 ⟩ = ⟨ 𝑍 , 𝑝 ⟩ )
2 1 breq2d ( 𝑞 = 𝑝 → ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ↔ 𝑈 Btwn ⟨ 𝑍 , 𝑝 ⟩ ) )
3 breq1 ( 𝑞 = 𝑝 → ( 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ↔ 𝑝 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) )
4 2 3 orbi12d ( 𝑞 = 𝑝 → ( ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) ↔ ( 𝑈 Btwn ⟨ 𝑍 , 𝑝 ⟩ ∨ 𝑝 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) ) )
5 4 cbvrabv { 𝑞 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) } = { 𝑝 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑝 ⟩ ∨ 𝑝 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) }
6 eqid { ⟨ 𝑧 , 𝑟 ⟩ ∣ ( 𝑧 ∈ { 𝑞 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) } ∧ ( 𝑟 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑧𝑗 ) = ( ( ( 1 − 𝑟 ) · ( 𝑍𝑗 ) ) + ( 𝑟 · ( 𝑈𝑗 ) ) ) ) ) } = { ⟨ 𝑧 , 𝑟 ⟩ ∣ ( 𝑧 ∈ { 𝑞 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) } ∧ ( 𝑟 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑧𝑗 ) = ( ( ( 1 − 𝑟 ) · ( 𝑍𝑗 ) ) + ( 𝑟 · ( 𝑈𝑗 ) ) ) ) ) }
7 6 axcontlem1 { ⟨ 𝑧 , 𝑟 ⟩ ∣ ( 𝑧 ∈ { 𝑞 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) } ∧ ( 𝑟 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑧𝑗 ) = ( ( ( 1 − 𝑟 ) · ( 𝑍𝑗 ) ) + ( 𝑟 · ( 𝑈𝑗 ) ) ) ) ) } = { ⟨ 𝑥 , 𝑡 ⟩ ∣ ( 𝑥 ∈ { 𝑞 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn ⟨ 𝑍 , 𝑞 ⟩ ∨ 𝑞 Btwn ⟨ 𝑍 , 𝑈 ⟩ ) } ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍𝑖 ) ) + ( 𝑡 · ( 𝑈𝑖 ) ) ) ) ) }
8 5 7 axcontlem10 ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ⊆ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨ 𝑍 , 𝑦 ⟩ ) ) ∧ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈𝐴𝐵 ≠ ∅ ) ∧ 𝑍𝑈 ) ) → ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∀ 𝑥𝐴𝑦𝐵 𝑏 Btwn ⟨ 𝑥 , 𝑦 ⟩ )