| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq2 |  |-  ( q = p -> <. Z , q >. = <. Z , p >. ) | 
						
							| 2 | 1 | breq2d |  |-  ( q = p -> ( U Btwn <. Z , q >. <-> U Btwn <. Z , p >. ) ) | 
						
							| 3 |  | breq1 |  |-  ( q = p -> ( q Btwn <. Z , U >. <-> p Btwn <. Z , U >. ) ) | 
						
							| 4 | 2 3 | orbi12d |  |-  ( q = p -> ( ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) <-> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 5 | 4 | cbvrabv |  |-  { q e. ( EE ` N ) | ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) } = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 6 |  | eqid |  |-  { <. z , r >. | ( z e. { q e. ( EE ` N ) | ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) } /\ ( r e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( z ` j ) = ( ( ( 1 - r ) x. ( Z ` j ) ) + ( r x. ( U ` j ) ) ) ) ) } = { <. z , r >. | ( z e. { q e. ( EE ` N ) | ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) } /\ ( r e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( z ` j ) = ( ( ( 1 - r ) x. ( Z ` j ) ) + ( r x. ( U ` j ) ) ) ) ) } | 
						
							| 7 | 6 | axcontlem1 |  |-  { <. z , r >. | ( z e. { q e. ( EE ` N ) | ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) } /\ ( r e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( z ` j ) = ( ( ( 1 - r ) x. ( Z ` j ) ) + ( r x. ( U ` j ) ) ) ) ) } = { <. x , t >. | ( x e. { q e. ( EE ` N ) | ( U Btwn <. Z , q >. \/ q Btwn <. Z , U >. ) } /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 8 | 5 7 | axcontlem10 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> E. b e. ( EE ` N ) A. x e. A A. y e. B b Btwn <. x , y >. ) |