Metamath Proof Explorer


Theorem axcontlem11

Description: Lemma for axcont . Eliminate the hypotheses from axcontlem10 . (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Assertion axcontlem11 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b 𝔼 N x A y B b Btwn x y

Proof

Step Hyp Ref Expression
1 opeq2 q = p Z q = Z p
2 1 breq2d q = p U Btwn Z q U Btwn Z p
3 breq1 q = p q Btwn Z U p Btwn Z U
4 2 3 orbi12d q = p U Btwn Z q q Btwn Z U U Btwn Z p p Btwn Z U
5 4 cbvrabv q 𝔼 N | U Btwn Z q q Btwn Z U = p 𝔼 N | U Btwn Z p p Btwn Z U
6 eqid z r | z q 𝔼 N | U Btwn Z q q Btwn Z U r 0 +∞ j 1 N z j = 1 r Z j + r U j = z r | z q 𝔼 N | U Btwn Z q q Btwn Z U r 0 +∞ j 1 N z j = 1 r Z j + r U j
7 6 axcontlem1 z r | z q 𝔼 N | U Btwn Z q q Btwn Z U r 0 +∞ j 1 N z j = 1 r Z j + r U j = x t | x q 𝔼 N | U Btwn Z q q Btwn Z U t 0 +∞ i 1 N x i = 1 t Z i + t U i
8 5 7 axcontlem10 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b 𝔼 N x A y B b Btwn x y