Metamath Proof Explorer


Theorem axcontlem10

Description: Lemma for axcont . Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Hypotheses axcontlem10.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
axcontlem10.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
Assertion axcontlem10 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b 𝔼 N x A y B b Btwn x y

Proof

Step Hyp Ref Expression
1 axcontlem10.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
2 axcontlem10.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
3 imassrn F A ran F
4 simpll N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U N
5 simprl1 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U Z 𝔼 N
6 simplr1 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U A 𝔼 N
7 simprl2 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U U A
8 6 7 sseldd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U U 𝔼 N
9 simprr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U Z U
10 1 2 axcontlem2 N Z 𝔼 N U 𝔼 N Z U F : D 1-1 onto 0 +∞
11 4 5 8 9 10 syl31anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F : D 1-1 onto 0 +∞
12 f1ofo F : D 1-1 onto 0 +∞ F : D onto 0 +∞
13 forn F : D onto 0 +∞ ran F = 0 +∞
14 11 12 13 3syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U ran F = 0 +∞
15 3 14 sseqtrid N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F A 0 +∞
16 rge0ssre 0 +∞
17 15 16 sstrdi N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F A
18 imassrn F B ran F
19 18 14 sseqtrid N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F B 0 +∞
20 19 16 sstrdi N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F B
21 1 2 axcontlem9 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m n
22 dedekindle F A F B m F A n F B m n k m F A n F B m k k n
23 17 20 21 22 syl3anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k m F A n F B m k k n
24 simpr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k k
25 simprl3 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U B
26 25 ad2antrr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k B
27 n0 B b b B
28 26 27 sylib N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b b B
29 0red N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B 0
30 f1of F : D 1-1 onto 0 +∞ F : D 0 +∞
31 11 30 syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F : D 0 +∞
32 1 axcontlem4 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U A D
33 32 7 sseldd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U U D
34 31 33 ffvelrnd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F U 0 +∞
35 16 34 sselid N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F U
36 35 ad2antrr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B F U
37 simprl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B k
38 elrege0 F U 0 +∞ F U 0 F U
39 38 simprbi F U 0 +∞ 0 F U
40 34 39 syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U 0 F U
41 40 ad2antrr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B 0 F U
42 f1of1 F : D 1-1 onto 0 +∞ F : D 1-1 0 +∞
43 11 42 syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F : D 1-1 0 +∞
44 f1elima F : D 1-1 0 +∞ U D A D F U F A U A
45 43 33 32 44 syl3anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F U F A U A
46 7 45 mpbird N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U F U F A
47 46 adantr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k b B F U F A
48 simpr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B b B
49 43 adantr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B F : D 1-1 0 +∞
50 simpl1 Z 𝔼 N U A B Z U Z 𝔼 N
51 simpl2 Z 𝔼 N U A B Z U U A
52 simpr Z 𝔼 N U A B Z U Z U
53 50 51 52 3jca Z 𝔼 N U A B Z U Z 𝔼 N U A Z U
54 1 axcontlem3 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U B D
55 53 54 sylan2 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U B D
56 55 sselda N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B b D
57 55 adantr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B B D
58 f1elima F : D 1-1 0 +∞ b D B D F b F B b B
59 49 56 57 58 syl3anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B F b F B b B
60 48 59 mpbird N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b B F b F B
61 60 adantrl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k b B F b F B
62 47 61 jca N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k b B F U F A F b F B
63 breq1 m = F U m k F U k
64 63 anbi1d m = F U m k k n F U k k n
65 breq2 n = F b k n k F b
66 65 anbi2d n = F b F U k k n F U k k F b
67 64 66 rspc2va F U F A F b F B m F A n F B m k k n F U k k F b
68 62 67 sylan N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k b B m F A n F B m k k n F U k k F b
69 68 an32s N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B F U k k F b
70 69 simpld N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B F U k
71 29 36 37 41 70 letrd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B 0 k
72 71 expr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b B 0 k
73 72 exlimdv N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b b B 0 k
74 28 73 mpd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 k
75 elrege0 k 0 +∞ k 0 k
76 24 74 75 sylanbrc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k k 0 +∞
77 76 ex N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k k 0 +∞
78 1 ssrab3 D 𝔼 N
79 simpr m F A n F B m k k n k 0 +∞ k 0 +∞
80 f1ocnvdm F : D 1-1 onto 0 +∞ k 0 +∞ F -1 k D
81 11 79 80 syl2an N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ F -1 k D
82 78 81 sselid N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ F -1 k 𝔼 N
83 4 5 8 3jca N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U N Z 𝔼 N U 𝔼 N
84 83 9 jca N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U N Z 𝔼 N U 𝔼 N Z U
85 84 adantr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B N Z 𝔼 N U 𝔼 N Z U
86 32 sselda N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A q D
87 86 adantrr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A r B q D
88 87 adantrl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B q D
89 simplr m F A n F B m k k n k 0 +∞ q A r B k 0 +∞
90 11 89 80 syl2an N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F -1 k D
91 55 sselda N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U r B r D
92 91 adantrl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A r B r D
93 92 adantrl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B r D
94 88 90 93 3jca N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B q D F -1 k D r D
95 85 94 jca N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B N Z 𝔼 N U 𝔼 N Z U q D F -1 k D r D
96 f1ofun F : D 1-1 onto 0 +∞ Fun F
97 11 96 syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U Fun F
98 fdm F : D 0 +∞ dom F = D
99 11 30 98 3syl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U dom F = D
100 32 99 sseqtrrd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U A dom F
101 funfvima2 Fun F A dom F q A F q F A
102 97 100 101 syl2anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A F q F A
103 55 99 sseqtrrd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U B dom F
104 funfvima2 Fun F B dom F r B F r F B
105 97 103 104 syl2anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U r B F r F B
106 102 105 anim12d N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A r B F q F A F r F B
107 106 imp N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U q A r B F q F A F r F B
108 107 adantrl N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F q F A F r F B
109 simprll N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B m F A n F B m k k n
110 breq1 m = F q m k F q k
111 110 anbi1d m = F q m k k n F q k k n
112 breq2 n = F r k n k F r
113 112 anbi2d n = F r F q k k n F q k k F r
114 111 113 rspc2v F q F A F r F B m F A n F B m k k n F q k k F r
115 108 109 114 sylc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F q k k F r
116 f1ocnvfv2 F : D 1-1 onto 0 +∞ k 0 +∞ F F -1 k = k
117 11 89 116 syl2an N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F F -1 k = k
118 117 breq2d N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F q F F -1 k F q k
119 117 breq1d N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F F -1 k F r k F r
120 118 119 anbi12d N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F q F F -1 k F F -1 k F r F q k k F r
121 115 120 mpbird N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F q F F -1 k F F -1 k F r
122 1 2 axcontlem8 N Z 𝔼 N U 𝔼 N Z U q D F -1 k D r D F q F F -1 k F F -1 k F r F -1 k Btwn q r
123 95 121 122 sylc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F -1 k Btwn q r
124 123 anassrs N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F -1 k Btwn q r
125 124 ralrimivva N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ q A r B F -1 k Btwn q r
126 opeq1 q = x q r = x r
127 126 breq2d q = x F -1 k Btwn q r F -1 k Btwn x r
128 opeq2 r = y x r = x y
129 128 breq2d r = y F -1 k Btwn x r F -1 k Btwn x y
130 127 129 cbvral2vw q A r B F -1 k Btwn q r x A y B F -1 k Btwn x y
131 125 130 sylib N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ x A y B F -1 k Btwn x y
132 breq1 b = F -1 k b Btwn x y F -1 k Btwn x y
133 132 2ralbidv b = F -1 k x A y B b Btwn x y x A y B F -1 k Btwn x y
134 133 rspcev F -1 k 𝔼 N x A y B F -1 k Btwn x y b 𝔼 N x A y B b Btwn x y
135 82 131 134 syl2anc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ b 𝔼 N x A y B b Btwn x y
136 135 expr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k 0 +∞ b 𝔼 N x A y B b Btwn x y
137 77 136 syld N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b 𝔼 N x A y B b Btwn x y
138 137 ex N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U m F A n F B m k k n k b 𝔼 N x A y B b Btwn x y
139 138 com23 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k m F A n F B m k k n b 𝔼 N x A y B b Btwn x y
140 139 rexlimdv N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U k m F A n F B m k k n b 𝔼 N x A y B b Btwn x y
141 23 140 mpd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A B Z U b 𝔼 N x A y B b Btwn x y