Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dedekindle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 | |
|
2 | simpr2 | |
|
3 | simp1 | |
|
4 | simpl | |
|
5 | disjel | |
|
6 | 3 4 5 | syl2an | |
7 | eleq1w | |
|
8 | 7 | biimpcd | |
9 | 8 | necon3bd | |
10 | 9 | ad2antll | |
11 | 6 10 | mpd | |
12 | simp2 | |
|
13 | ssel2 | |
|
14 | 12 4 13 | syl2an | |
15 | simp3 | |
|
16 | simpr | |
|
17 | ssel2 | |
|
18 | 15 16 17 | syl2an | |
19 | 14 18 | ltlend | |
20 | 19 | biimprd | |
21 | 11 20 | mpan2d | |
22 | 21 | ralimdvva | |
23 | 22 | 3exp | |
24 | 23 | 3imp2 | |
25 | dedekind | |
|
26 | 1 2 24 25 | syl3anc | |
27 | 26 | ex | |
28 | n0 | |
|
29 | simp1 | |
|
30 | elinel1 | |
|
31 | ssel2 | |
|
32 | 29 30 31 | syl2an | |
33 | nfv | |
|
34 | nfv | |
|
35 | nfra1 | |
|
36 | 33 34 35 | nf3an | |
37 | nfv | |
|
38 | 36 37 | nfan | |
39 | nfv | |
|
40 | nfv | |
|
41 | nfra2w | |
|
42 | 39 40 41 | nf3an | |
43 | nfv | |
|
44 | 42 43 | nfan | |
45 | rsp | |
|
46 | elinel2 | |
|
47 | breq2 | |
|
48 | 47 | rspccv | |
49 | 46 48 | syl5 | |
50 | 45 49 | syl6 | |
51 | 50 | com23 | |
52 | 51 | imp32 | |
53 | 52 | 3ad2antl3 | |
54 | 53 | adantr | |
55 | simp3 | |
|
56 | 30 | adantr | |
57 | breq1 | |
|
58 | 57 | ralbidv | |
59 | 58 | rspccva | |
60 | 55 56 59 | syl2an | |
61 | 60 | r19.21bi | |
62 | 54 61 | jca | |
63 | 62 | ex | |
64 | 44 63 | ralrimi | |
65 | 64 | expr | |
66 | 38 65 | ralrimi | |
67 | breq2 | |
|
68 | breq1 | |
|
69 | 67 68 | anbi12d | |
70 | 69 | 2ralbidv | |
71 | 70 | rspcev | |
72 | 32 66 71 | syl2anc | |
73 | 72 | expcom | |
74 | 73 | exlimiv | |
75 | 28 74 | sylbi | |
76 | 27 75 | pm2.61ine | |