Metamath Proof Explorer


Theorem dedekindle

Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013)

Ref Expression
Assertion dedekindle ABxAyBxyzxAyBxzzy

Proof

Step Hyp Ref Expression
1 simpr1 AB=ABxAyBxyA
2 simpr2 AB=ABxAyBxyB
3 simp1 AB=ABAB=
4 simpl xAyBxA
5 disjel AB=xA¬xB
6 3 4 5 syl2an AB=ABxAyB¬xB
7 eleq1w y=xyBxB
8 7 biimpcd yBy=xxB
9 8 necon3bd yB¬xByx
10 9 ad2antll AB=ABxAyB¬xByx
11 6 10 mpd AB=ABxAyByx
12 simp2 AB=ABA
13 ssel2 AxAx
14 12 4 13 syl2an AB=ABxAyBx
15 simp3 AB=ABB
16 simpr xAyByB
17 ssel2 ByBy
18 15 16 17 syl2an AB=ABxAyBy
19 14 18 ltlend AB=ABxAyBx<yxyyx
20 19 biimprd AB=ABxAyBxyyxx<y
21 11 20 mpan2d AB=ABxAyBxyx<y
22 21 ralimdvva AB=ABxAyBxyxAyBx<y
23 22 3exp AB=ABxAyBxyxAyBx<y
24 23 3imp2 AB=ABxAyBxyxAyBx<y
25 dedekind ABxAyBx<yzxAyBxzzy
26 1 2 24 25 syl3anc AB=ABxAyBxyzxAyBxzzy
27 26 ex AB=ABxAyBxyzxAyBxzzy
28 n0 ABwwAB
29 simp1 ABxAyBxyA
30 elinel1 wABwA
31 ssel2 AwAw
32 29 30 31 syl2an ABxAyBxywABw
33 nfv xA
34 nfv xB
35 nfra1 xxAyBxy
36 33 34 35 nf3an xABxAyBxy
37 nfv xwAB
38 36 37 nfan xABxAyBxywAB
39 nfv yA
40 nfv yB
41 nfra2w yxAyBxy
42 39 40 41 nf3an yABxAyBxy
43 nfv ywABxA
44 42 43 nfan yABxAyBxywABxA
45 rsp xAyBxyxAyBxy
46 elinel2 wABwB
47 breq2 y=wxyxw
48 47 rspccv yBxywBxw
49 46 48 syl5 yBxywABxw
50 45 49 syl6 xAyBxyxAwABxw
51 50 com23 xAyBxywABxAxw
52 51 imp32 xAyBxywABxAxw
53 52 3ad2antl3 ABxAyBxywABxAxw
54 53 adantr ABxAyBxywABxAyBxw
55 simp3 ABxAyBxyxAyBxy
56 30 adantr wABxAwA
57 breq1 x=wxywy
58 57 ralbidv x=wyBxyyBwy
59 58 rspccva xAyBxywAyBwy
60 55 56 59 syl2an ABxAyBxywABxAyBwy
61 60 r19.21bi ABxAyBxywABxAyBwy
62 54 61 jca ABxAyBxywABxAyBxwwy
63 62 ex ABxAyBxywABxAyBxwwy
64 44 63 ralrimi ABxAyBxywABxAyBxwwy
65 64 expr ABxAyBxywABxAyBxwwy
66 38 65 ralrimi ABxAyBxywABxAyBxwwy
67 breq2 z=wxzxw
68 breq1 z=wzywy
69 67 68 anbi12d z=wxzzyxwwy
70 69 2ralbidv z=wxAyBxzzyxAyBxwwy
71 70 rspcev wxAyBxwwyzxAyBxzzy
72 32 66 71 syl2anc ABxAyBxywABzxAyBxzzy
73 72 expcom wABABxAyBxyzxAyBxzzy
74 73 exlimiv wwABABxAyBxyzxAyBxzzy
75 28 74 sylbi ABABxAyBxyzxAyBxzzy
76 27 75 pm2.61ine ABxAyBxyzxAyBxzzy