Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → 𝐴 ⊆ ℝ ) |
2 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → 𝐵 ⊆ ℝ ) |
3 |
|
simp1 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
4 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
5 |
|
disjel |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
7 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
biimpcd |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝐵 ) ) |
9 |
8
|
necon3bd |
⊢ ( 𝑦 ∈ 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥 ) ) |
10 |
9
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥 ) ) |
11 |
6 10
|
mpd |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ≠ 𝑥 ) |
12 |
|
simp2 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
13 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
14 |
12 4 13
|
syl2an |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
15 |
|
simp3 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐵 ⊆ ℝ ) |
16 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
17 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ℝ ) |
19 |
14 18
|
ltlend |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ) ) |
20 |
19
|
biimprd |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) → 𝑥 < 𝑦 ) ) |
21 |
11 20
|
mpan2d |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≤ 𝑦 → 𝑥 < 𝑦 ) ) |
22 |
21
|
ralimdvva |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
23 |
22
|
3exp |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ⊆ ℝ → ( 𝐵 ⊆ ℝ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) ) ) |
24 |
23
|
3imp2 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
25 |
|
dedekind |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
26 |
1 2 24 25
|
syl3anc |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
28 |
|
n0 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) |
29 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) |
30 |
|
elinel1 |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 𝐴 ) |
31 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑤 ∈ ℝ ) |
33 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ⊆ ℝ |
34 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ⊆ ℝ |
35 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
36 |
33 34 35
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
37 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) |
38 |
36 37
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ⊆ ℝ |
40 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 ⊆ ℝ |
41 |
|
nfra2w |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 |
42 |
39 40 41
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
43 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) |
44 |
42 43
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
45 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) |
46 |
|
elinel2 |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
47 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤 ) ) |
48 |
47
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ 𝐵 → 𝑥 ≤ 𝑤 ) ) |
49 |
46 48
|
syl5 |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ≤ 𝑤 ) ) |
50 |
45 49
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ≤ 𝑤 ) ) ) |
51 |
50
|
com23 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑤 ) ) ) |
52 |
51
|
imp32 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ≤ 𝑤 ) |
53 |
52
|
3ad2antl3 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ≤ 𝑤 ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ≤ 𝑤 ) |
55 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
56 |
30
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) |
57 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) ) |
59 |
58
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) |
60 |
55 56 59
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) |
61 |
60
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑤 ≤ 𝑦 ) |
62 |
54 61
|
jca |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
63 |
62
|
ex |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
64 |
44 63
|
ralrimi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
65 |
64
|
expr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
66 |
38 65
|
ralrimi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
67 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤 ) ) |
68 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
69 |
67 68
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
70 |
69
|
2ralbidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
71 |
70
|
rspcev |
⊢ ( ( 𝑤 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
72 |
32 66 71
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
73 |
72
|
expcom |
⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
74 |
73
|
exlimiv |
⊢ ( ∃ 𝑤 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
75 |
28 74
|
sylbi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
76 |
27 75
|
pm2.61ine |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |