| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr1 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | simpr2 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) )  →  𝐵  ⊆  ℝ ) | 
						
							| 3 |  | simp1 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 |  | disjel | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 7 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝐵  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 7 | biimpcd | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝑦  =  𝑥  →  𝑥  ∈  𝐵 ) ) | 
						
							| 9 | 8 | necon3bd | ⊢ ( 𝑦  ∈  𝐵  →  ( ¬  𝑥  ∈  𝐵  →  𝑦  ≠  𝑥 ) ) | 
						
							| 10 | 9 | ad2antll | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ¬  𝑥  ∈  𝐵  →  𝑦  ≠  𝑥 ) ) | 
						
							| 11 | 6 10 | mpd | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ≠  𝑥 ) | 
						
							| 12 |  | simp2 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  →  𝐴  ⊆  ℝ ) | 
						
							| 13 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 14 | 12 4 13 | syl2an | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 15 |  | simp3 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  →  𝐵  ⊆  ℝ ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 17 |  | ssel2 | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  ℝ ) | 
						
							| 18 | 15 16 17 | syl2an | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 19 | 14 18 | ltlend | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  <  𝑦  ↔  ( 𝑥  ≤  𝑦  ∧  𝑦  ≠  𝑥 ) ) ) | 
						
							| 20 | 19 | biimprd | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  ≠  𝑥 )  →  𝑥  <  𝑦 ) ) | 
						
							| 21 | 11 20 | mpan2d | ⊢ ( ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  ≤  𝑦  →  𝑥  <  𝑦 ) ) | 
						
							| 22 | 21 | ralimdvva | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <  𝑦 ) ) | 
						
							| 23 | 22 | 3exp | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( 𝐴  ⊆  ℝ  →  ( 𝐵  ⊆  ℝ  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <  𝑦 ) ) ) ) | 
						
							| 24 | 23 | 3imp2 | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <  𝑦 ) | 
						
							| 25 |  | dedekind | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 26 | 1 2 24 25 | syl3anc | ⊢ ( ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 28 |  | n0 | ⊢ ( ( 𝐴  ∩  𝐵 )  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 29 |  | simp1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  𝐴  ⊆  ℝ ) | 
						
							| 30 |  | elinel1 | ⊢ ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  𝑤  ∈  𝐴 ) | 
						
							| 31 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ℝ ) | 
						
							| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝑤  ∈  ℝ ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ⊆  ℝ | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑥 𝐵  ⊆  ℝ | 
						
							| 35 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 | 
						
							| 36 | 33 34 35 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  ∈  ( 𝐴  ∩  𝐵 ) | 
						
							| 38 | 36 37 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑦 𝐴  ⊆  ℝ | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑦 𝐵  ⊆  ℝ | 
						
							| 41 |  | nfra2w | ⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 | 
						
							| 42 | 39 40 41 | nf3an | ⊢ Ⅎ 𝑦 ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) | 
						
							| 44 | 42 43 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 45 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) ) | 
						
							| 46 |  | elinel2 | ⊢ ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  𝑤  ∈  𝐵 ) | 
						
							| 47 |  | breq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑥  ≤  𝑦  ↔  𝑥  ≤  𝑤 ) ) | 
						
							| 48 | 47 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ( 𝑤  ∈  𝐵  →  𝑥  ≤  𝑤 ) ) | 
						
							| 49 | 46 48 | syl5 | ⊢ ( ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ≤  𝑤 ) ) | 
						
							| 50 | 45 49 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ( 𝑥  ∈  𝐴  →  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  𝑥  ≤  𝑤 ) ) ) | 
						
							| 51 | 50 | com23 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  →  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ≤  𝑤 ) ) ) | 
						
							| 52 | 51 | imp32 | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  →  𝑥  ≤  𝑤 ) | 
						
							| 53 | 52 | 3ad2antl3 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  →  𝑥  ≤  𝑤 ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑥  ≤  𝑤 ) | 
						
							| 55 |  | simp3 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 ) | 
						
							| 56 | 30 | adantr | ⊢ ( ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑤  ∈  𝐴 ) | 
						
							| 57 |  | breq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ≤  𝑦  ↔  𝑤  ≤  𝑦 ) ) | 
						
							| 58 | 57 | ralbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  ↔  ∀ 𝑦  ∈  𝐵 𝑤  ≤  𝑦 ) ) | 
						
							| 59 | 58 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦  ∧  𝑤  ∈  𝐴 )  →  ∀ 𝑦  ∈  𝐵 𝑤  ≤  𝑦 ) | 
						
							| 60 | 55 56 59 | syl2an | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  →  ∀ 𝑦  ∈  𝐵 𝑤  ≤  𝑦 ) | 
						
							| 61 | 60 | r19.21bi | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  𝑤  ≤  𝑦 ) | 
						
							| 62 | 54 61 | jca | ⊢ ( ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) ) | 
						
							| 64 | 44 63 | ralrimi | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑥  ∈  𝐴 ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) | 
						
							| 65 | 64 | expr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) ) | 
						
							| 66 | 38 65 | ralrimi | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ( 𝐴  ∩  𝐵 ) )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) | 
						
							| 67 |  | breq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑥  ≤  𝑧  ↔  𝑥  ≤  𝑤 ) ) | 
						
							| 68 |  | breq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  ≤  𝑦  ↔  𝑤  ≤  𝑦 ) ) | 
						
							| 69 | 67 68 | anbi12d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  ↔  ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) ) | 
						
							| 70 | 69 | 2ralbidv | ⊢ ( 𝑧  =  𝑤  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) ) ) | 
						
							| 71 | 70 | rspcev | ⊢ ( ( 𝑤  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑤  ∧  𝑤  ≤  𝑦 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 72 | 32 66 71 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  ∧  𝑤  ∈  ( 𝐴  ∩  𝐵 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) | 
						
							| 73 | 72 | expcom | ⊢ ( 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 74 | 73 | exlimiv | ⊢ ( ∃ 𝑤 𝑤  ∈  ( 𝐴  ∩  𝐵 )  →  ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 75 | 28 74 | sylbi | ⊢ ( ( 𝐴  ∩  𝐵 )  ≠  ∅  →  ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) ) | 
						
							| 76 | 27 75 | pm2.61ine | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐵  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  ≤  𝑦 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) |