Metamath Proof Explorer


Theorem dedekindle

Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013)

Ref Expression
Assertion dedekindle ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 simpr1 ( ( ( 𝐴𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → 𝐴 ⊆ ℝ )
2 simpr2 ( ( ( 𝐴𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → 𝐵 ⊆ ℝ )
3 simp1 ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( 𝐴𝐵 ) = ∅ )
4 simpl ( ( 𝑥𝐴𝑦𝐵 ) → 𝑥𝐴 )
5 disjel ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝑥𝐴 ) → ¬ 𝑥𝐵 )
6 3 4 5 syl2an ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ¬ 𝑥𝐵 )
7 eleq1w ( 𝑦 = 𝑥 → ( 𝑦𝐵𝑥𝐵 ) )
8 7 biimpcd ( 𝑦𝐵 → ( 𝑦 = 𝑥𝑥𝐵 ) )
9 8 necon3bd ( 𝑦𝐵 → ( ¬ 𝑥𝐵𝑦𝑥 ) )
10 9 ad2antll ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( ¬ 𝑥𝐵𝑦𝑥 ) )
11 6 10 mpd ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦𝑥 )
12 simp2 ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ )
13 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
14 12 4 13 syl2an ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑥 ∈ ℝ )
15 simp3 ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐵 ⊆ ℝ )
16 simpr ( ( 𝑥𝐴𝑦𝐵 ) → 𝑦𝐵 )
17 ssel2 ( ( 𝐵 ⊆ ℝ ∧ 𝑦𝐵 ) → 𝑦 ∈ ℝ )
18 15 16 17 syl2an ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑦 ∈ ℝ )
19 14 18 ltlend ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝑥𝑦𝑦𝑥 ) ) )
20 19 biimprd ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( ( 𝑥𝑦𝑦𝑥 ) → 𝑥 < 𝑦 ) )
21 11 20 mpan2d ( ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑥𝑦𝑥 < 𝑦 ) )
22 21 ralimdvva ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀ 𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ) )
23 22 3exp ( ( 𝐴𝐵 ) = ∅ → ( 𝐴 ⊆ ℝ → ( 𝐵 ⊆ ℝ → ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀ 𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ) ) ) )
24 23 3imp2 ( ( ( 𝐴𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 < 𝑦 )
25 dedekind ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )
26 1 2 24 25 syl3anc ( ( ( 𝐴𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )
27 26 ex ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) ) )
28 n0 ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐴𝐵 ) )
29 simp1 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → 𝐴 ⊆ ℝ )
30 elinel1 ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑤𝐴 )
31 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑤𝐴 ) → 𝑤 ∈ ℝ )
32 29 30 31 syl2an ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → 𝑤 ∈ ℝ )
33 nfv 𝑥 𝐴 ⊆ ℝ
34 nfv 𝑥 𝐵 ⊆ ℝ
35 nfra1 𝑥𝑥𝐴𝑦𝐵 𝑥𝑦
36 33 34 35 nf3an 𝑥 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )
37 nfv 𝑥 𝑤 ∈ ( 𝐴𝐵 )
38 36 37 nfan 𝑥 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ 𝑤 ∈ ( 𝐴𝐵 ) )
39 nfv 𝑦 𝐴 ⊆ ℝ
40 nfv 𝑦 𝐵 ⊆ ℝ
41 nfra2w 𝑦𝑥𝐴𝑦𝐵 𝑥𝑦
42 39 40 41 nf3an 𝑦 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )
43 nfv 𝑦 ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 )
44 42 43 nfan 𝑦 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) )
45 rsp ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ( 𝑥𝐴 → ∀ 𝑦𝐵 𝑥𝑦 ) )
46 elinel2 ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑤𝐵 )
47 breq2 ( 𝑦 = 𝑤 → ( 𝑥𝑦𝑥𝑤 ) )
48 47 rspccv ( ∀ 𝑦𝐵 𝑥𝑦 → ( 𝑤𝐵𝑥𝑤 ) )
49 46 48 syl5 ( ∀ 𝑦𝐵 𝑥𝑦 → ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑥𝑤 ) )
50 45 49 syl6 ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ( 𝑥𝐴 → ( 𝑤 ∈ ( 𝐴𝐵 ) → 𝑥𝑤 ) ) )
51 50 com23 ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ( 𝑤 ∈ ( 𝐴𝐵 ) → ( 𝑥𝐴𝑥𝑤 ) ) )
52 51 imp32 ( ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) → 𝑥𝑤 )
53 52 3ad2antl3 ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) → 𝑥𝑤 )
54 53 adantr ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) ∧ 𝑦𝐵 ) → 𝑥𝑤 )
55 simp3 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 )
56 30 adantr ( ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) → 𝑤𝐴 )
57 breq1 ( 𝑥 = 𝑤 → ( 𝑥𝑦𝑤𝑦 ) )
58 57 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑦𝐵 𝑥𝑦 ↔ ∀ 𝑦𝐵 𝑤𝑦 ) )
59 58 rspccva ( ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦𝑤𝐴 ) → ∀ 𝑦𝐵 𝑤𝑦 )
60 55 56 59 syl2an ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) → ∀ 𝑦𝐵 𝑤𝑦 )
61 60 r19.21bi ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) ∧ 𝑦𝐵 ) → 𝑤𝑦 )
62 54 61 jca ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) ∧ 𝑦𝐵 ) → ( 𝑥𝑤𝑤𝑦 ) )
63 62 ex ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) → ( 𝑦𝐵 → ( 𝑥𝑤𝑤𝑦 ) ) )
64 44 63 ralrimi ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐴 ) ) → ∀ 𝑦𝐵 ( 𝑥𝑤𝑤𝑦 ) )
65 64 expr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ( 𝑥𝐴 → ∀ 𝑦𝐵 ( 𝑥𝑤𝑤𝑦 ) ) )
66 38 65 ralrimi ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑤𝑤𝑦 ) )
67 breq2 ( 𝑧 = 𝑤 → ( 𝑥𝑧𝑥𝑤 ) )
68 breq1 ( 𝑧 = 𝑤 → ( 𝑧𝑦𝑤𝑦 ) )
69 67 68 anbi12d ( 𝑧 = 𝑤 → ( ( 𝑥𝑧𝑧𝑦 ) ↔ ( 𝑥𝑤𝑤𝑦 ) ) )
70 69 2ralbidv ( 𝑧 = 𝑤 → ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑤𝑤𝑦 ) ) )
71 70 rspcev ( ( 𝑤 ∈ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑤𝑤𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )
72 32 66 71 syl2anc ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) ∧ 𝑤 ∈ ( 𝐴𝐵 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )
73 72 expcom ( 𝑤 ∈ ( 𝐴𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) ) )
74 73 exlimiv ( ∃ 𝑤 𝑤 ∈ ( 𝐴𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) ) )
75 28 74 sylbi ( ( 𝐴𝐵 ) ≠ ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) ) )
76 27 75 pm2.61ine ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑧𝑧𝑦 ) )