Metamath Proof Explorer


Theorem axcontlem1

Description: Lemma for axcont . Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Hypothesis axcontlem1.1 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
Assertion axcontlem1 F = y s | y D s 0 +∞ j 1 N y j = 1 s Z j + s U j

Proof

Step Hyp Ref Expression
1 axcontlem1.1 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
2 eleq1w x = y x D y D
3 2 adantr x = y t = s x D y D
4 eleq1w t = s t 0 +∞ s 0 +∞
5 4 adantl x = y t = s t 0 +∞ s 0 +∞
6 fveq1 x = y x i = y i
7 oveq2 t = s 1 t = 1 s
8 7 oveq1d t = s 1 t Z i = 1 s Z i
9 oveq1 t = s t U i = s U i
10 8 9 oveq12d t = s 1 t Z i + t U i = 1 s Z i + s U i
11 6 10 eqeqan12d x = y t = s x i = 1 t Z i + t U i y i = 1 s Z i + s U i
12 11 ralbidv x = y t = s i 1 N x i = 1 t Z i + t U i i 1 N y i = 1 s Z i + s U i
13 fveq2 i = j y i = y j
14 fveq2 i = j Z i = Z j
15 14 oveq2d i = j 1 s Z i = 1 s Z j
16 fveq2 i = j U i = U j
17 16 oveq2d i = j s U i = s U j
18 15 17 oveq12d i = j 1 s Z i + s U i = 1 s Z j + s U j
19 13 18 eqeq12d i = j y i = 1 s Z i + s U i y j = 1 s Z j + s U j
20 19 cbvralvw i 1 N y i = 1 s Z i + s U i j 1 N y j = 1 s Z j + s U j
21 12 20 bitrdi x = y t = s i 1 N x i = 1 t Z i + t U i j 1 N y j = 1 s Z j + s U j
22 5 21 anbi12d x = y t = s t 0 +∞ i 1 N x i = 1 t Z i + t U i s 0 +∞ j 1 N y j = 1 s Z j + s U j
23 3 22 anbi12d x = y t = s x D t 0 +∞ i 1 N x i = 1 t Z i + t U i y D s 0 +∞ j 1 N y j = 1 s Z j + s U j
24 23 cbvopabv x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i = y s | y D s 0 +∞ j 1 N y j = 1 s Z j + s U j
25 1 24 eqtri F = y s | y D s 0 +∞ j 1 N y j = 1 s Z j + s U j