Metamath Proof Explorer


Theorem axcontlem1

Description: Lemma for axcont . Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013)

Ref Expression
Hypothesis axcontlem1.1 F=xt|xDt0+∞i1Nxi=1tZi+tUi
Assertion axcontlem1 F=ys|yDs0+∞j1Nyj=1sZj+sUj

Proof

Step Hyp Ref Expression
1 axcontlem1.1 F=xt|xDt0+∞i1Nxi=1tZi+tUi
2 eleq1w x=yxDyD
3 2 adantr x=yt=sxDyD
4 eleq1w t=st0+∞s0+∞
5 4 adantl x=yt=st0+∞s0+∞
6 fveq1 x=yxi=yi
7 oveq2 t=s1t=1s
8 7 oveq1d t=s1tZi=1sZi
9 oveq1 t=stUi=sUi
10 8 9 oveq12d t=s1tZi+tUi=1sZi+sUi
11 6 10 eqeqan12d x=yt=sxi=1tZi+tUiyi=1sZi+sUi
12 11 ralbidv x=yt=si1Nxi=1tZi+tUii1Nyi=1sZi+sUi
13 fveq2 i=jyi=yj
14 fveq2 i=jZi=Zj
15 14 oveq2d i=j1sZi=1sZj
16 fveq2 i=jUi=Uj
17 16 oveq2d i=jsUi=sUj
18 15 17 oveq12d i=j1sZi+sUi=1sZj+sUj
19 13 18 eqeq12d i=jyi=1sZi+sUiyj=1sZj+sUj
20 19 cbvralvw i1Nyi=1sZi+sUij1Nyj=1sZj+sUj
21 12 20 bitrdi x=yt=si1Nxi=1tZi+tUij1Nyj=1sZj+sUj
22 5 21 anbi12d x=yt=st0+∞i1Nxi=1tZi+tUis0+∞j1Nyj=1sZj+sUj
23 3 22 anbi12d x=yt=sxDt0+∞i1Nxi=1tZi+tUiyDs0+∞j1Nyj=1sZj+sUj
24 23 cbvopabv xt|xDt0+∞i1Nxi=1tZi+tUi=ys|yDs0+∞j1Nyj=1sZj+sUj
25 1 24 eqtri F=ys|yDs0+∞j1Nyj=1sZj+sUj