Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem1.1 |
⊢ 𝐹 = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) } |
2 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( 𝑥 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷 ) ) |
4 |
|
eleq1w |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∈ ( 0 [,) +∞ ) ↔ 𝑠 ∈ ( 0 [,) +∞ ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( 𝑡 ∈ ( 0 [,) +∞ ) ↔ 𝑠 ∈ ( 0 [,) +∞ ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑡 = 𝑠 → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑡 = 𝑠 → ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑡 = 𝑠 → ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) = ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) |
10 |
8 9
|
oveq12d |
⊢ ( 𝑡 = 𝑠 → ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) ) |
11 |
6 10
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ↔ ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑗 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) = ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) |
18 |
15 17
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) |
19 |
13 18
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) ↔ ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) |
20 |
19
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑖 ) ) ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) |
21 |
12 20
|
bitrdi |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ↔ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) |
22 |
5 21
|
anbi12d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ↔ ( 𝑠 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) ) |
23 |
3 22
|
anbi12d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑠 ) → ( ( 𝑥 ∈ 𝐷 ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ∧ ( 𝑠 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) ) ) |
24 |
23
|
cbvopabv |
⊢ { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) } = { 〈 𝑦 , 𝑠 〉 ∣ ( 𝑦 ∈ 𝐷 ∧ ( 𝑠 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) } |
25 |
1 24
|
eqtri |
⊢ 𝐹 = { 〈 𝑦 , 𝑠 〉 ∣ ( 𝑦 ∈ 𝐷 ∧ ( 𝑠 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) } |