Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem1.1 |
|- F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
2 |
|
eleq1w |
|- ( x = y -> ( x e. D <-> y e. D ) ) |
3 |
2
|
adantr |
|- ( ( x = y /\ t = s ) -> ( x e. D <-> y e. D ) ) |
4 |
|
eleq1w |
|- ( t = s -> ( t e. ( 0 [,) +oo ) <-> s e. ( 0 [,) +oo ) ) ) |
5 |
4
|
adantl |
|- ( ( x = y /\ t = s ) -> ( t e. ( 0 [,) +oo ) <-> s e. ( 0 [,) +oo ) ) ) |
6 |
|
fveq1 |
|- ( x = y -> ( x ` i ) = ( y ` i ) ) |
7 |
|
oveq2 |
|- ( t = s -> ( 1 - t ) = ( 1 - s ) ) |
8 |
7
|
oveq1d |
|- ( t = s -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - s ) x. ( Z ` i ) ) ) |
9 |
|
oveq1 |
|- ( t = s -> ( t x. ( U ` i ) ) = ( s x. ( U ` i ) ) ) |
10 |
8 9
|
oveq12d |
|- ( t = s -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
11 |
6 10
|
eqeqan12d |
|- ( ( x = y /\ t = s ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( y ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
12 |
11
|
ralbidv |
|- ( ( x = y /\ t = s ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
13 |
|
fveq2 |
|- ( i = j -> ( y ` i ) = ( y ` j ) ) |
14 |
|
fveq2 |
|- ( i = j -> ( Z ` i ) = ( Z ` j ) ) |
15 |
14
|
oveq2d |
|- ( i = j -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( 1 - s ) x. ( Z ` j ) ) ) |
16 |
|
fveq2 |
|- ( i = j -> ( U ` i ) = ( U ` j ) ) |
17 |
16
|
oveq2d |
|- ( i = j -> ( s x. ( U ` i ) ) = ( s x. ( U ` j ) ) ) |
18 |
15 17
|
oveq12d |
|- ( i = j -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) |
19 |
13 18
|
eqeq12d |
|- ( i = j -> ( ( y ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) |
20 |
19
|
cbvralvw |
|- ( A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) |
21 |
12 20
|
bitrdi |
|- ( ( x = y /\ t = s ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) |
22 |
5 21
|
anbi12d |
|- ( ( x = y /\ t = s ) -> ( ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) ) |
23 |
3 22
|
anbi12d |
|- ( ( x = y /\ t = s ) -> ( ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( y e. D /\ ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) ) ) |
24 |
23
|
cbvopabv |
|- { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } = { <. y , s >. | ( y e. D /\ ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) } |
25 |
1 24
|
eqtri |
|- F = { <. y , s >. | ( y e. D /\ ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) } |