| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem2.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | axcontlem2.2 |  |-  F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 3 |  | opeq2 |  |-  ( p = x -> <. Z , p >. = <. Z , x >. ) | 
						
							| 4 | 3 | breq2d |  |-  ( p = x -> ( U Btwn <. Z , p >. <-> U Btwn <. Z , x >. ) ) | 
						
							| 5 |  | breq1 |  |-  ( p = x -> ( p Btwn <. Z , U >. <-> x Btwn <. Z , U >. ) ) | 
						
							| 6 | 4 5 | orbi12d |  |-  ( p = x -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) | 
						
							| 7 | 6 1 | elrab2 |  |-  ( x e. D <-> ( x e. ( EE ` N ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) | 
						
							| 8 |  | simpll3 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> U e. ( EE ` N ) ) | 
						
							| 9 |  | simpll2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 11 |  | brbtwn |  |-  ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ x e. ( EE ` N ) ) -> ( U Btwn <. Z , x >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) | 
						
							| 12 | 8 9 10 11 | syl3anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> ( U Btwn <. Z , x >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) | 
						
							| 13 | 12 | biimpa |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ U Btwn <. Z , x >. ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) | 
						
							| 14 |  | simp-4r |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> Z =/= U ) | 
						
							| 15 |  | oveq2 |  |-  ( s = 0 -> ( 1 - s ) = ( 1 - 0 ) ) | 
						
							| 16 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( s = 0 -> ( 1 - s ) = 1 ) | 
						
							| 18 | 17 | oveq1d |  |-  ( s = 0 -> ( ( 1 - s ) x. ( Z ` i ) ) = ( 1 x. ( Z ` i ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( s = 0 -> ( s x. ( x ` i ) ) = ( 0 x. ( x ` i ) ) ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( s = 0 -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( s = 0 -> ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) <-> ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) | 
						
							| 22 | 21 | ralbidv |  |-  ( s = 0 -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) | 
						
							| 23 | 22 | biimpac |  |-  ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) /\ s = 0 ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) | 
						
							| 24 |  | eqcom |  |-  ( Z = U <-> U = Z ) | 
						
							| 25 | 8 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> U e. ( EE ` N ) ) | 
						
							| 26 | 9 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> Z e. ( EE ` N ) ) | 
						
							| 27 |  | eqeefv |  |-  ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) | 
						
							| 28 | 25 26 27 | syl2anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) | 
						
							| 29 | 9 | ad2antrr |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 30 |  | fveecn |  |-  ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 31 | 29 30 | sylancom |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 32 |  | fveecn |  |-  ( ( x e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) | 
						
							| 33 | 32 | ad4ant24 |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) | 
						
							| 34 |  | mullid |  |-  ( ( Z ` i ) e. CC -> ( 1 x. ( Z ` i ) ) = ( Z ` i ) ) | 
						
							| 35 |  | mul02 |  |-  ( ( x ` i ) e. CC -> ( 0 x. ( x ` i ) ) = 0 ) | 
						
							| 36 | 34 35 | oveqan12d |  |-  ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) = ( ( Z ` i ) + 0 ) ) | 
						
							| 37 |  | addrid |  |-  ( ( Z ` i ) e. CC -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) | 
						
							| 39 | 36 38 | eqtrd |  |-  ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) = ( Z ` i ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> ( U ` i ) = ( Z ` i ) ) ) | 
						
							| 41 | 31 33 40 | syl2anc |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> ( U ` i ) = ( Z ` i ) ) ) | 
						
							| 42 | 41 | ralbidva |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) | 
						
							| 43 | 28 42 | bitr4d |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) | 
						
							| 44 | 24 43 | bitrid |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) | 
						
							| 45 | 23 44 | imbitrrid |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) /\ s = 0 ) -> Z = U ) ) | 
						
							| 46 | 45 | expdimp |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( s = 0 -> Z = U ) ) | 
						
							| 47 | 46 | necon3d |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( Z =/= U -> s =/= 0 ) ) | 
						
							| 48 | 14 47 | mpd |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> s =/= 0 ) | 
						
							| 49 |  | elicc01 |  |-  ( s e. ( 0 [,] 1 ) <-> ( s e. RR /\ 0 <_ s /\ s <_ 1 ) ) | 
						
							| 50 | 49 | simp1bi |  |-  ( s e. ( 0 [,] 1 ) -> s e. RR ) | 
						
							| 51 |  | rereccl |  |-  ( ( s e. RR /\ s =/= 0 ) -> ( 1 / s ) e. RR ) | 
						
							| 52 | 50 51 | sylan |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> ( 1 / s ) e. RR ) | 
						
							| 53 | 50 | adantr |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> s e. RR ) | 
						
							| 54 | 49 | simp2bi |  |-  ( s e. ( 0 [,] 1 ) -> 0 <_ s ) | 
						
							| 55 | 54 | adantr |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 <_ s ) | 
						
							| 56 |  | simpr |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> s =/= 0 ) | 
						
							| 57 | 53 55 56 | ne0gt0d |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 < s ) | 
						
							| 58 |  | 1re |  |-  1 e. RR | 
						
							| 59 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 60 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( s e. RR /\ 0 < s ) ) -> 0 <_ ( 1 / s ) ) | 
						
							| 61 | 58 59 60 | mpanl12 |  |-  ( ( s e. RR /\ 0 < s ) -> 0 <_ ( 1 / s ) ) | 
						
							| 62 | 53 57 61 | syl2anc |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 <_ ( 1 / s ) ) | 
						
							| 63 |  | elrege0 |  |-  ( ( 1 / s ) e. ( 0 [,) +oo ) <-> ( ( 1 / s ) e. RR /\ 0 <_ ( 1 / s ) ) ) | 
						
							| 64 | 52 62 63 | sylanbrc |  |-  ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> ( 1 / s ) e. ( 0 [,) +oo ) ) | 
						
							| 65 | 64 | adantll |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> ( 1 / s ) e. ( 0 [,) +oo ) ) | 
						
							| 66 | 50 | ad3antlr |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s e. RR ) | 
						
							| 67 | 66 | recnd |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s e. CC ) | 
						
							| 68 |  | simplr |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s =/= 0 ) | 
						
							| 69 | 32 | ad5ant25 |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) | 
						
							| 70 | 9 | ad3antrrr |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 71 | 70 30 | sylancom |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 72 |  | ax-1cn |  |-  1 e. CC | 
						
							| 73 |  | reccl |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( 1 / s ) e. CC ) | 
						
							| 74 |  | subcl |  |-  ( ( 1 e. CC /\ ( 1 / s ) e. CC ) -> ( 1 - ( 1 / s ) ) e. CC ) | 
						
							| 75 | 72 73 74 | sylancr |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( 1 - ( 1 / s ) ) e. CC ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 - ( 1 / s ) ) e. CC ) | 
						
							| 77 |  | subcl |  |-  ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) | 
						
							| 78 | 72 77 | mpan |  |-  ( s e. CC -> ( 1 - s ) e. CC ) | 
						
							| 79 | 78 | adantr |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( 1 - s ) e. CC ) | 
						
							| 80 | 73 79 | mulcld |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. ( 1 - s ) ) e. CC ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( 1 - s ) ) e. CC ) | 
						
							| 82 |  | simprr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) | 
						
							| 83 | 76 81 82 | adddird |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) ) | 
						
							| 84 |  | simpl |  |-  ( ( s e. CC /\ s =/= 0 ) -> s e. CC ) | 
						
							| 85 |  | subdi |  |-  ( ( ( 1 / s ) e. CC /\ 1 e. CC /\ s e. CC ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) | 
						
							| 86 | 72 85 | mp3an2 |  |-  ( ( ( 1 / s ) e. CC /\ s e. CC ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) | 
						
							| 87 | 73 84 86 | syl2anc |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) ) | 
						
							| 89 | 73 | mulridd |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. 1 ) = ( 1 / s ) ) | 
						
							| 90 |  | recid2 |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. s ) = 1 ) | 
						
							| 91 | 89 90 | oveq12d |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) = ( ( 1 / s ) - 1 ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) | 
						
							| 93 |  | addsubass |  |-  ( ( ( 1 - ( 1 / s ) ) e. CC /\ ( 1 / s ) e. CC /\ 1 e. CC ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) | 
						
							| 94 | 72 93 | mp3an3 |  |-  ( ( ( 1 - ( 1 / s ) ) e. CC /\ ( 1 / s ) e. CC ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) | 
						
							| 95 | 75 73 94 | syl2anc |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) | 
						
							| 96 | 75 73 | addcld |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) e. CC ) | 
						
							| 97 |  | npcan |  |-  ( ( 1 e. CC /\ ( 1 / s ) e. CC ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) = 1 ) | 
						
							| 98 | 72 73 97 | sylancr |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) = 1 ) | 
						
							| 99 | 96 98 | subeq0bd |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = 0 ) | 
						
							| 100 | 92 95 99 | 3eqtr2d |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) = 0 ) | 
						
							| 101 | 88 100 | eqtrd |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = 0 ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = 0 ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( 0 x. ( Z ` i ) ) ) | 
						
							| 104 | 73 | adantr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 / s ) e. CC ) | 
						
							| 105 | 78 | ad2antrr |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 - s ) e. CC ) | 
						
							| 106 | 104 105 82 | mulassd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) = ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) | 
						
							| 107 | 106 | oveq2d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) ) | 
						
							| 108 | 83 103 107 | 3eqtr3rd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = ( 0 x. ( Z ` i ) ) ) | 
						
							| 109 |  | mul02 |  |-  ( ( Z ` i ) e. CC -> ( 0 x. ( Z ` i ) ) = 0 ) | 
						
							| 110 | 109 | ad2antll |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 0 x. ( Z ` i ) ) = 0 ) | 
						
							| 111 | 108 110 | eqtrd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = 0 ) | 
						
							| 112 |  | simpll |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> s e. CC ) | 
						
							| 113 |  | simprl |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( x ` i ) e. CC ) | 
						
							| 114 | 104 112 113 | mulassd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) | 
						
							| 115 | 90 | oveq1d |  |-  ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( 1 x. ( x ` i ) ) ) | 
						
							| 116 |  | mullid |  |-  ( ( x ` i ) e. CC -> ( 1 x. ( x ` i ) ) = ( x ` i ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) -> ( 1 x. ( x ` i ) ) = ( x ` i ) ) | 
						
							| 118 | 115 117 | sylan9eq |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( x ` i ) ) | 
						
							| 119 | 114 118 | eqtr3d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) = ( x ` i ) ) | 
						
							| 120 | 111 119 | oveq12d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( 0 + ( x ` i ) ) ) | 
						
							| 121 | 76 82 | mulcld |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 122 |  | simpr |  |-  ( ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) -> ( Z ` i ) e. CC ) | 
						
							| 123 |  | mulcl |  |-  ( ( ( 1 - s ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) | 
						
							| 124 | 79 122 123 | syl2an |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) | 
						
							| 125 | 104 124 | mulcld |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) e. CC ) | 
						
							| 126 |  | mulcl |  |-  ( ( s e. CC /\ ( x ` i ) e. CC ) -> ( s x. ( x ` i ) ) e. CC ) | 
						
							| 127 | 126 | ad2ant2r |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( s x. ( x ` i ) ) e. CC ) | 
						
							| 128 | 104 127 | mulcld |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) e. CC ) | 
						
							| 129 | 121 125 128 | addassd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 130 | 104 124 127 | adddid |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) = ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 132 | 129 131 | eqtr4d |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 133 |  | addlid |  |-  ( ( x ` i ) e. CC -> ( 0 + ( x ` i ) ) = ( x ` i ) ) | 
						
							| 134 | 133 | ad2antrl |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 0 + ( x ` i ) ) = ( x ` i ) ) | 
						
							| 135 | 120 132 134 | 3eqtr3rd |  |-  ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 136 | 67 68 69 71 135 | syl22anc |  |-  ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 138 |  | oveq2 |  |-  ( t = ( 1 / s ) -> ( 1 - t ) = ( 1 - ( 1 / s ) ) ) | 
						
							| 139 | 138 | oveq1d |  |-  ( t = ( 1 / s ) -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) ) | 
						
							| 140 |  | oveq1 |  |-  ( t = ( 1 / s ) -> ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) = ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) | 
						
							| 141 | 139 140 | oveq12d |  |-  ( t = ( 1 / s ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 142 | 141 | eqeq2d |  |-  ( t = ( 1 / s ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) <-> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 143 | 142 | ralbidv |  |-  ( t = ( 1 / s ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 144 | 143 | rspcev |  |-  ( ( ( 1 / s ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 145 | 65 137 144 | syl2anc |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 146 |  | oveq2 |  |-  ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( t x. ( U ` i ) ) = ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) | 
						
							| 147 | 146 | oveq2d |  |-  ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) | 
						
							| 148 | 147 | eqeq2d |  |-  ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 149 | 148 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 150 |  | ralbi |  |-  ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 151 | 149 150 | syl |  |-  ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 152 | 151 | rexbidv |  |-  ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) | 
						
							| 153 | 145 152 | syl5ibrcom |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 154 | 153 | impancom |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( s =/= 0 -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 155 | 48 154 | mpd |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 156 | 155 | r19.29an |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 157 | 13 156 | syldan |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ U Btwn <. Z , x >. ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 158 |  | 3simpa |  |-  ( ( x e. RR /\ 0 <_ x /\ x <_ 1 ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 159 |  | elicc01 |  |-  ( x e. ( 0 [,] 1 ) <-> ( x e. RR /\ 0 <_ x /\ x <_ 1 ) ) | 
						
							| 160 |  | elrege0 |  |-  ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 161 | 158 159 160 | 3imtr4i |  |-  ( x e. ( 0 [,] 1 ) -> x e. ( 0 [,) +oo ) ) | 
						
							| 162 | 161 | ssriv |  |-  ( 0 [,] 1 ) C_ ( 0 [,) +oo ) | 
						
							| 163 |  | brbtwn |  |-  ( ( x e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( x Btwn <. Z , U >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 164 | 10 9 8 163 | syl3anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. Z , U >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 165 | 164 | biimpa |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ x Btwn <. Z , U >. ) -> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 166 |  | ssrexv |  |-  ( ( 0 [,] 1 ) C_ ( 0 [,) +oo ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 167 | 162 165 166 | mpsyl |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ x Btwn <. Z , U >. ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 168 | 157 167 | jaodan |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 169 | 168 | anasss |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 170 | 7 169 | sylan2b |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 171 |  | r19.26 |  |-  ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) | 
						
							| 172 |  | eqtr2 |  |-  ( ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 173 | 172 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 174 | 171 173 | sylbir |  |-  ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 175 |  | elrege0 |  |-  ( t e. ( 0 [,) +oo ) <-> ( t e. RR /\ 0 <_ t ) ) | 
						
							| 176 | 175 | simplbi |  |-  ( t e. ( 0 [,) +oo ) -> t e. RR ) | 
						
							| 177 | 176 | recnd |  |-  ( t e. ( 0 [,) +oo ) -> t e. CC ) | 
						
							| 178 |  | elrege0 |  |-  ( s e. ( 0 [,) +oo ) <-> ( s e. RR /\ 0 <_ s ) ) | 
						
							| 179 | 178 | simplbi |  |-  ( s e. ( 0 [,) +oo ) -> s e. RR ) | 
						
							| 180 | 179 | recnd |  |-  ( s e. ( 0 [,) +oo ) -> s e. CC ) | 
						
							| 181 | 177 180 | anim12i |  |-  ( ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) -> ( t e. CC /\ s e. CC ) ) | 
						
							| 182 |  | simplr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( t e. CC /\ s e. CC ) ) | 
						
							| 183 |  | simpl2 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> Z e. ( EE ` N ) ) | 
						
							| 184 | 183 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 185 | 184 30 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 186 |  | simpl3 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> U e. ( EE ` N ) ) | 
						
							| 187 | 186 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) | 
						
							| 188 |  | fveecn |  |-  ( ( U e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) | 
						
							| 189 | 187 188 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) | 
						
							| 190 |  | subcl |  |-  ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) | 
						
							| 191 | 72 190 | mpan |  |-  ( t e. CC -> ( 1 - t ) e. CC ) | 
						
							| 192 | 191 | adantr |  |-  ( ( t e. CC /\ s e. CC ) -> ( 1 - t ) e. CC ) | 
						
							| 193 |  | simpl |  |-  ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( Z ` i ) e. CC ) | 
						
							| 194 |  | mulcl |  |-  ( ( ( 1 - t ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) | 
						
							| 195 | 192 193 194 | syl2an |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) | 
						
							| 196 |  | mulcl |  |-  ( ( t e. CC /\ ( U ` i ) e. CC ) -> ( t x. ( U ` i ) ) e. CC ) | 
						
							| 197 | 196 | ad2ant2rl |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t x. ( U ` i ) ) e. CC ) | 
						
							| 198 | 78 | adantl |  |-  ( ( t e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) | 
						
							| 199 | 198 193 123 | syl2an |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) | 
						
							| 200 |  | mulcl |  |-  ( ( s e. CC /\ ( U ` i ) e. CC ) -> ( s x. ( U ` i ) ) e. CC ) | 
						
							| 201 | 200 | ad2ant2l |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( s x. ( U ` i ) ) e. CC ) | 
						
							| 202 | 195 197 199 201 | addsubeq4d |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) ) | 
						
							| 203 |  | nnncan1 |  |-  ( ( 1 e. CC /\ s e. CC /\ t e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) | 
						
							| 204 | 72 203 | mp3an1 |  |-  ( ( s e. CC /\ t e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) | 
						
							| 205 | 204 | ancoms |  |-  ( ( t e. CC /\ s e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) | 
						
							| 206 | 205 | oveq1d |  |-  ( ( t e. CC /\ s e. CC ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( t - s ) x. ( Z ` i ) ) ) | 
						
							| 207 | 206 | adantr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( t - s ) x. ( Z ` i ) ) ) | 
						
							| 208 | 78 | ad2antlr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - s ) e. CC ) | 
						
							| 209 | 191 | ad2antrr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - t ) e. CC ) | 
						
							| 210 |  | simprl |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) | 
						
							| 211 | 208 209 210 | subdird |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) ) | 
						
							| 212 | 207 211 | eqtr3d |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( t - s ) x. ( Z ` i ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) ) | 
						
							| 213 |  | simpll |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> t e. CC ) | 
						
							| 214 |  | simplr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> s e. CC ) | 
						
							| 215 |  | simprr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) e. CC ) | 
						
							| 216 | 213 214 215 | subdird |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( t - s ) x. ( U ` i ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) | 
						
							| 217 | 212 216 | eqeq12d |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) ) | 
						
							| 218 |  | subcl |  |-  ( ( t e. CC /\ s e. CC ) -> ( t - s ) e. CC ) | 
						
							| 219 | 218 | adantr |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t - s ) e. CC ) | 
						
							| 220 |  | mulcan1g |  |-  ( ( ( t - s ) e. CC /\ ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 221 | 219 210 215 220 | syl3anc |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 222 | 202 217 221 | 3bitr2d |  |-  ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 223 | 182 185 189 222 | syl12anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 224 | 223 | ralbidva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 225 |  | r19.32v |  |-  ( A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 226 |  | simplr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> Z =/= U ) | 
						
							| 227 | 226 | neneqd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> -. Z = U ) | 
						
							| 228 |  | simpll2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> Z e. ( EE ` N ) ) | 
						
							| 229 |  | simpll3 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> U e. ( EE ` N ) ) | 
						
							| 230 |  | eqeefv |  |-  ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 231 | 228 229 230 | syl2anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 232 | 227 231 | mtbid |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> -. A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) | 
						
							| 233 |  | orel2 |  |-  ( -. A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> ( t - s ) = 0 ) ) | 
						
							| 234 | 232 233 | syl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> ( t - s ) = 0 ) ) | 
						
							| 235 |  | subeq0 |  |-  ( ( t e. CC /\ s e. CC ) -> ( ( t - s ) = 0 <-> t = s ) ) | 
						
							| 236 | 235 | adantl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( t - s ) = 0 <-> t = s ) ) | 
						
							| 237 | 234 236 | sylibd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> t = s ) ) | 
						
							| 238 | 225 237 | biimtrid |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) -> t = s ) ) | 
						
							| 239 | 224 238 | sylbid |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) -> t = s ) ) | 
						
							| 240 | 181 239 | sylan2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) -> t = s ) ) | 
						
							| 241 | 174 240 | syl5 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) | 
						
							| 242 | 241 | ralrimivva |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) | 
						
							| 243 | 242 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) | 
						
							| 244 |  | oveq2 |  |-  ( t = s -> ( 1 - t ) = ( 1 - s ) ) | 
						
							| 245 | 244 | oveq1d |  |-  ( t = s -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - s ) x. ( Z ` i ) ) ) | 
						
							| 246 |  | oveq1 |  |-  ( t = s -> ( t x. ( U ` i ) ) = ( s x. ( U ` i ) ) ) | 
						
							| 247 | 245 246 | oveq12d |  |-  ( t = s -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 248 | 247 | eqeq2d |  |-  ( t = s -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) | 
						
							| 249 | 248 | ralbidv |  |-  ( t = s -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) | 
						
							| 250 | 249 | reu4 |  |-  ( E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) ) | 
						
							| 251 | 170 243 250 | sylanbrc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 252 |  | df-reu |  |-  ( E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 253 | 251 252 | sylib |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 254 | 253 | ralrimiva |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. x e. D E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 255 | 2 | fnopabg |  |-  ( A. x e. D E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> F Fn D ) | 
						
							| 256 | 254 255 | sylib |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F Fn D ) | 
						
							| 257 | 176 | ad2antlr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> t e. RR ) | 
						
							| 258 | 183 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 259 |  | fveere |  |-  ( ( Z e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( Z ` k ) e. RR ) | 
						
							| 260 | 258 259 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( Z ` k ) e. RR ) | 
						
							| 261 | 186 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) | 
						
							| 262 |  | fveere |  |-  ( ( U e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( U ` k ) e. RR ) | 
						
							| 263 | 261 262 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( U ` k ) e. RR ) | 
						
							| 264 |  | resubcl |  |-  ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) e. RR ) | 
						
							| 265 | 58 264 | mpan |  |-  ( t e. RR -> ( 1 - t ) e. RR ) | 
						
							| 266 |  | remulcl |  |-  ( ( ( 1 - t ) e. RR /\ ( Z ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) | 
						
							| 267 | 265 266 | sylan |  |-  ( ( t e. RR /\ ( Z ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) | 
						
							| 268 | 267 | 3adant3 |  |-  ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) | 
						
							| 269 |  | remulcl |  |-  ( ( t e. RR /\ ( U ` k ) e. RR ) -> ( t x. ( U ` k ) ) e. RR ) | 
						
							| 270 | 269 | 3adant2 |  |-  ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( t x. ( U ` k ) ) e. RR ) | 
						
							| 271 | 268 270 | readdcld |  |-  ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) | 
						
							| 272 | 257 260 263 271 | syl3anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) | 
						
							| 273 | 272 | ralrimiva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) | 
						
							| 274 |  | simpll1 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> N e. NN ) | 
						
							| 275 |  | mptelee |  |-  ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) ) | 
						
							| 276 | 274 275 | syl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) ) | 
						
							| 277 | 273 276 | mpbird |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) | 
						
							| 278 |  | letric |  |-  ( ( 1 e. RR /\ t e. RR ) -> ( 1 <_ t \/ t <_ 1 ) ) | 
						
							| 279 | 58 176 278 | sylancr |  |-  ( t e. ( 0 [,) +oo ) -> ( 1 <_ t \/ t <_ 1 ) ) | 
						
							| 280 | 279 | adantl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( 1 <_ t \/ t <_ 1 ) ) | 
						
							| 281 |  | simpr |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 1 <_ t ) | 
						
							| 282 | 176 | adantr |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> t e. RR ) | 
						
							| 283 |  | 0red |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 e. RR ) | 
						
							| 284 |  | 1red |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 1 e. RR ) | 
						
							| 285 |  | 0lt1 |  |-  0 < 1 | 
						
							| 286 | 285 | a1i |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 < 1 ) | 
						
							| 287 | 283 284 282 286 281 | ltletrd |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 < t ) | 
						
							| 288 |  | divelunit |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( t e. RR /\ 0 < t ) ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) | 
						
							| 289 | 58 59 288 | mpanl12 |  |-  ( ( t e. RR /\ 0 < t ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) | 
						
							| 290 | 282 287 289 | syl2anc |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) | 
						
							| 291 | 281 290 | mpbird |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> ( 1 / t ) e. ( 0 [,] 1 ) ) | 
						
							| 292 | 291 | adantll |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( 1 / t ) e. ( 0 [,] 1 ) ) | 
						
							| 293 | 176 | ad3antlr |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t e. RR ) | 
						
							| 294 | 293 | recnd |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t e. CC ) | 
						
							| 295 | 287 | gt0ne0d |  |-  ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> t =/= 0 ) | 
						
							| 296 | 295 | adantll |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> t =/= 0 ) | 
						
							| 297 | 296 | adantr |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t =/= 0 ) | 
						
							| 298 | 183 | ad3antrrr |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 299 | 298 30 | sylancom |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 300 | 186 | ad3antrrr |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) | 
						
							| 301 | 300 188 | sylancom |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) | 
						
							| 302 |  | reccl |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( 1 / t ) e. CC ) | 
						
							| 303 | 302 | adantr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 / t ) e. CC ) | 
						
							| 304 | 191 | adantr |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( 1 - t ) e. CC ) | 
						
							| 305 | 304 193 194 | syl2an |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) | 
						
							| 306 | 196 | ad2ant2rl |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t x. ( U ` i ) ) e. CC ) | 
						
							| 307 | 303 305 306 | adddid |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) = ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) | 
						
							| 308 | 307 | oveq2d |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 309 |  | subcl |  |-  ( ( 1 e. CC /\ ( 1 / t ) e. CC ) -> ( 1 - ( 1 / t ) ) e. CC ) | 
						
							| 310 | 72 302 309 | sylancr |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( 1 - ( 1 / t ) ) e. CC ) | 
						
							| 311 |  | mulcl |  |-  ( ( ( 1 - ( 1 / t ) ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 312 | 310 193 311 | syl2an |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 313 | 303 305 | mulcld |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) e. CC ) | 
						
							| 314 |  | recid2 |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. t ) = 1 ) | 
						
							| 315 | 314 | oveq1d |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( 1 x. ( U ` i ) ) ) | 
						
							| 316 | 315 | adantr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( 1 x. ( U ` i ) ) ) | 
						
							| 317 |  | simpll |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> t e. CC ) | 
						
							| 318 |  | simprr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) e. CC ) | 
						
							| 319 | 303 317 318 | mulassd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) | 
						
							| 320 |  | mullid |  |-  ( ( U ` i ) e. CC -> ( 1 x. ( U ` i ) ) = ( U ` i ) ) | 
						
							| 321 | 320 | ad2antll |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 x. ( U ` i ) ) = ( U ` i ) ) | 
						
							| 322 | 316 319 321 | 3eqtr3d |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) = ( U ` i ) ) | 
						
							| 323 | 322 318 | eqeltrd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) e. CC ) | 
						
							| 324 | 312 313 323 | addassd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 325 | 310 | adantr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - ( 1 / t ) ) e. CC ) | 
						
							| 326 | 302 304 | mulcld |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) e. CC ) | 
						
							| 327 | 326 | adantr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( 1 - t ) ) e. CC ) | 
						
							| 328 |  | simprl |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) | 
						
							| 329 | 325 327 328 | adddird |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) ) | 
						
							| 330 |  | simpl |  |-  ( ( t e. CC /\ t =/= 0 ) -> t e. CC ) | 
						
							| 331 |  | subdi |  |-  ( ( ( 1 / t ) e. CC /\ 1 e. CC /\ t e. CC ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) | 
						
							| 332 | 72 331 | mp3an2 |  |-  ( ( ( 1 / t ) e. CC /\ t e. CC ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) | 
						
							| 333 | 302 330 332 | syl2anc |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) | 
						
							| 334 | 302 | mulridd |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. 1 ) = ( 1 / t ) ) | 
						
							| 335 | 334 314 | oveq12d |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) = ( ( 1 / t ) - 1 ) ) | 
						
							| 336 | 333 335 | eqtrd |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( 1 / t ) - 1 ) ) | 
						
							| 337 | 336 | oveq2d |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) ) | 
						
							| 338 |  | npncan2 |  |-  ( ( 1 e. CC /\ ( 1 / t ) e. CC ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) = 0 ) | 
						
							| 339 | 72 302 338 | sylancr |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) = 0 ) | 
						
							| 340 | 337 339 | eqtrd |  |-  ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = 0 ) | 
						
							| 341 | 340 | adantr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = 0 ) | 
						
							| 342 | 341 | oveq1d |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( 0 x. ( Z ` i ) ) ) | 
						
							| 343 | 109 | ad2antrl |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 0 x. ( Z ` i ) ) = 0 ) | 
						
							| 344 | 342 343 | eqtrd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = 0 ) | 
						
							| 345 | 191 | ad2antrr |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - t ) e. CC ) | 
						
							| 346 | 303 345 328 | mulassd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) = ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) | 
						
							| 347 | 346 | oveq2d |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) ) | 
						
							| 348 | 329 344 347 | 3eqtr3rd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) = 0 ) | 
						
							| 349 | 348 322 | oveq12d |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( 0 + ( U ` i ) ) ) | 
						
							| 350 |  | addlid |  |-  ( ( U ` i ) e. CC -> ( 0 + ( U ` i ) ) = ( U ` i ) ) | 
						
							| 351 | 350 | ad2antll |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 0 + ( U ` i ) ) = ( U ` i ) ) | 
						
							| 352 | 349 351 | eqtrd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( U ` i ) ) | 
						
							| 353 | 308 324 352 | 3eqtr2rd |  |-  ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 354 | 294 297 299 301 353 | syl22anc |  |-  ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 355 | 354 | ralrimiva |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 356 |  | oveq2 |  |-  ( s = ( 1 / t ) -> ( 1 - s ) = ( 1 - ( 1 / t ) ) ) | 
						
							| 357 | 356 | oveq1d |  |-  ( s = ( 1 / t ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) ) | 
						
							| 358 |  | oveq1 |  |-  ( s = ( 1 / t ) -> ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) = ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) | 
						
							| 359 | 357 358 | oveq12d |  |-  ( s = ( 1 / t ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) | 
						
							| 360 | 359 | eqeq2d |  |-  ( s = ( 1 / t ) -> ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) | 
						
							| 361 | 360 | ralbidv |  |-  ( s = ( 1 / t ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) | 
						
							| 362 |  | fveq2 |  |-  ( k = i -> ( Z ` k ) = ( Z ` i ) ) | 
						
							| 363 | 362 | oveq2d |  |-  ( k = i -> ( ( 1 - t ) x. ( Z ` k ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) | 
						
							| 364 |  | fveq2 |  |-  ( k = i -> ( U ` k ) = ( U ` i ) ) | 
						
							| 365 | 364 | oveq2d |  |-  ( k = i -> ( t x. ( U ` k ) ) = ( t x. ( U ` i ) ) ) | 
						
							| 366 | 363 365 | oveq12d |  |-  ( k = i -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 367 |  | eqid |  |-  ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) | 
						
							| 368 |  | ovex |  |-  ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) e. _V | 
						
							| 369 | 366 367 368 | fvmpt |  |-  ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 370 | 369 | oveq2d |  |-  ( i e. ( 1 ... N ) -> ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) = ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 371 | 370 | oveq2d |  |-  ( i e. ( 1 ... N ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 372 | 371 | eqeq2d |  |-  ( i e. ( 1 ... N ) -> ( ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 373 | 372 | ralbiia |  |-  ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 374 | 361 373 | bitrdi |  |-  ( s = ( 1 / t ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 375 | 374 | rspcev |  |-  ( ( ( 1 / t ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) | 
						
							| 376 | 292 355 375 | syl2anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) | 
						
							| 377 | 186 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> U e. ( EE ` N ) ) | 
						
							| 378 | 183 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> Z e. ( EE ` N ) ) | 
						
							| 379 | 277 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) | 
						
							| 380 |  | brbtwn |  |-  ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) | 
						
							| 381 | 377 378 379 380 | syl3anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) | 
						
							| 382 | 376 381 | mpbird |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) | 
						
							| 383 | 382 | ex |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( 1 <_ t -> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) ) | 
						
							| 384 |  | simpll |  |-  ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> t e. RR ) | 
						
							| 385 |  | simplr |  |-  ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> 0 <_ t ) | 
						
							| 386 |  | simpr |  |-  ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> t <_ 1 ) | 
						
							| 387 | 384 385 386 | 3jca |  |-  ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) | 
						
							| 388 | 175 | anbi1i |  |-  ( ( t e. ( 0 [,) +oo ) /\ t <_ 1 ) <-> ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) ) | 
						
							| 389 |  | elicc01 |  |-  ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) | 
						
							| 390 | 387 388 389 | 3imtr4i |  |-  ( ( t e. ( 0 [,) +oo ) /\ t <_ 1 ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 391 | 390 | adantll |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 392 | 369 | rgen |  |-  A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) | 
						
							| 393 |  | oveq2 |  |-  ( s = t -> ( 1 - s ) = ( 1 - t ) ) | 
						
							| 394 | 393 | oveq1d |  |-  ( s = t -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) | 
						
							| 395 |  | oveq1 |  |-  ( s = t -> ( s x. ( U ` i ) ) = ( t x. ( U ` i ) ) ) | 
						
							| 396 | 394 395 | oveq12d |  |-  ( s = t -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 397 | 396 | eqeq2d |  |-  ( s = t -> ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 398 | 397 | ralbidv |  |-  ( s = t -> ( A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 399 | 398 | rspcev |  |-  ( ( t e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 400 | 391 392 399 | sylancl |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) | 
						
							| 401 | 277 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) | 
						
							| 402 | 183 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> Z e. ( EE ` N ) ) | 
						
							| 403 | 186 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> U e. ( EE ` N ) ) | 
						
							| 404 |  | brbtwn |  |-  ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) | 
						
							| 405 | 401 402 403 404 | syl3anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) | 
						
							| 406 | 400 405 | mpbird |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) | 
						
							| 407 | 406 | ex |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( t <_ 1 -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) | 
						
							| 408 | 383 407 | orim12d |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( ( 1 <_ t \/ t <_ 1 ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) | 
						
							| 409 | 280 408 | mpd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) | 
						
							| 410 |  | opeq2 |  |-  ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> <. Z , p >. = <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) | 
						
							| 411 | 410 | breq2d |  |-  ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( U Btwn <. Z , p >. <-> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) ) | 
						
							| 412 |  | breq1 |  |-  ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( p Btwn <. Z , U >. <-> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) | 
						
							| 413 | 411 412 | orbi12d |  |-  ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) | 
						
							| 414 | 413 1 | elrab2 |  |-  ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) /\ ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) | 
						
							| 415 | 277 409 414 | sylanbrc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D ) | 
						
							| 416 |  | fveq1 |  |-  ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) | 
						
							| 417 | 416 | eqeq1d |  |-  ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 418 | 417 | ralbidv |  |-  ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 419 | 418 | rspcev |  |-  ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D /\ A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 420 | 415 392 419 | sylancl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) | 
						
							| 421 | 7 | simplbi |  |-  ( x e. D -> x e. ( EE ` N ) ) | 
						
							| 422 | 1 | ssrab3 |  |-  D C_ ( EE ` N ) | 
						
							| 423 | 422 | sseli |  |-  ( y e. D -> y e. ( EE ` N ) ) | 
						
							| 424 | 421 423 | anim12i |  |-  ( ( x e. D /\ y e. D ) -> ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) | 
						
							| 425 |  | r19.26 |  |-  ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 426 |  | eqtr3 |  |-  ( ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> ( x ` i ) = ( y ` i ) ) | 
						
							| 427 | 426 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) | 
						
							| 428 | 425 427 | sylbir |  |-  ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) | 
						
							| 429 |  | eqeefv |  |-  ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( x = y <-> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) ) | 
						
							| 430 | 429 | adantl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( x = y <-> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) ) | 
						
							| 431 | 428 430 | imbitrrid |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) | 
						
							| 432 | 424 431 | sylan2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. D /\ y e. D ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) | 
						
							| 433 | 432 | ralrimivva |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) | 
						
							| 434 | 433 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) | 
						
							| 435 |  | df-reu |  |-  ( E! x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 436 |  | fveq1 |  |-  ( x = y -> ( x ` i ) = ( y ` i ) ) | 
						
							| 437 | 436 | eqeq1d |  |-  ( x = y -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 438 | 437 | ralbidv |  |-  ( x = y -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 439 | 438 | reu4 |  |-  ( E! x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) ) | 
						
							| 440 | 435 439 | bitr3i |  |-  ( E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) ) | 
						
							| 441 | 420 434 440 | sylanbrc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 442 | 441 | ralrimiva |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. t e. ( 0 [,) +oo ) E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 443 |  | an12 |  |-  ( ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 444 | 443 | opabbii |  |-  { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } = { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 445 | 2 444 | eqtri |  |-  F = { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 446 | 445 | cnveqi |  |-  `' F = `' { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 447 |  | cnvopab |  |-  `' { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } = { <. t , x >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 448 | 446 447 | eqtri |  |-  `' F = { <. t , x >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 449 | 448 | fnopabg |  |-  ( A. t e. ( 0 [,) +oo ) E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> `' F Fn ( 0 [,) +oo ) ) | 
						
							| 450 | 442 449 | sylib |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> `' F Fn ( 0 [,) +oo ) ) | 
						
							| 451 |  | dff1o4 |  |-  ( F : D -1-1-onto-> ( 0 [,) +oo ) <-> ( F Fn D /\ `' F Fn ( 0 [,) +oo ) ) ) | 
						
							| 452 | 256 450 451 | sylanbrc |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D -1-1-onto-> ( 0 [,) +oo ) ) |