Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem3.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
2 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> B C_ ( EE ` N ) ) |
3 |
|
simpr2 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> U e. A ) |
4 |
3
|
anim1i |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> ( U e. A /\ p e. B ) ) |
5 |
|
simplr3 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. x e. A A. y e. B x Btwn <. Z , y >. ) |
6 |
5
|
adantr |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> A. x e. A A. y e. B x Btwn <. Z , y >. ) |
7 |
|
breq1 |
|- ( x = U -> ( x Btwn <. Z , y >. <-> U Btwn <. Z , y >. ) ) |
8 |
|
opeq2 |
|- ( y = p -> <. Z , y >. = <. Z , p >. ) |
9 |
8
|
breq2d |
|- ( y = p -> ( U Btwn <. Z , y >. <-> U Btwn <. Z , p >. ) ) |
10 |
7 9
|
rspc2v |
|- ( ( U e. A /\ p e. B ) -> ( A. x e. A A. y e. B x Btwn <. Z , y >. -> U Btwn <. Z , p >. ) ) |
11 |
4 6 10
|
sylc |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> U Btwn <. Z , p >. ) |
12 |
11
|
orcd |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) |
13 |
12
|
ralrimiva |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) |
14 |
1
|
sseq2i |
|- ( B C_ D <-> B C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } ) |
15 |
|
ssrab |
|- ( B C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } <-> ( B C_ ( EE ` N ) /\ A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
16 |
14 15
|
bitri |
|- ( B C_ D <-> ( B C_ ( EE ` N ) /\ A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
17 |
2 13 16
|
sylanbrc |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> B C_ D ) |