| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem3.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | simplr2 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> B C_ ( EE ` N ) ) | 
						
							| 3 |  | simpr2 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> U e. A ) | 
						
							| 4 | 3 | anim1i |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> ( U e. A /\ p e. B ) ) | 
						
							| 5 |  | simplr3 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. x e. A A. y e. B x Btwn <. Z , y >. ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> A. x e. A A. y e. B x Btwn <. Z , y >. ) | 
						
							| 7 |  | breq1 |  |-  ( x = U -> ( x Btwn <. Z , y >. <-> U Btwn <. Z , y >. ) ) | 
						
							| 8 |  | opeq2 |  |-  ( y = p -> <. Z , y >. = <. Z , p >. ) | 
						
							| 9 | 8 | breq2d |  |-  ( y = p -> ( U Btwn <. Z , y >. <-> U Btwn <. Z , p >. ) ) | 
						
							| 10 | 7 9 | rspc2v |  |-  ( ( U e. A /\ p e. B ) -> ( A. x e. A A. y e. B x Btwn <. Z , y >. -> U Btwn <. Z , p >. ) ) | 
						
							| 11 | 4 6 10 | sylc |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> U Btwn <. Z , p >. ) | 
						
							| 12 | 11 | orcd |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. B ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) | 
						
							| 13 | 12 | ralrimiva |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) | 
						
							| 14 | 1 | sseq2i |  |-  ( B C_ D <-> B C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } ) | 
						
							| 15 |  | ssrab |  |-  ( B C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } <-> ( B C_ ( EE ` N ) /\ A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 16 | 14 15 | bitri |  |-  ( B C_ D <-> ( B C_ ( EE ` N ) /\ A. p e. B ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 17 | 2 13 16 | sylanbrc |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> B C_ D ) |