| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem4.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A C_ ( EE ` N ) ) | 
						
							| 3 |  | n0 |  |-  ( B =/= (/) <-> E. b b e. B ) | 
						
							| 4 |  | idd |  |-  ( b e. B -> ( A C_ ( EE ` N ) -> A C_ ( EE ` N ) ) ) | 
						
							| 5 |  | ssel |  |-  ( B C_ ( EE ` N ) -> ( b e. B -> b e. ( EE ` N ) ) ) | 
						
							| 6 | 5 | com12 |  |-  ( b e. B -> ( B C_ ( EE ` N ) -> b e. ( EE ` N ) ) ) | 
						
							| 7 |  | opeq2 |  |-  ( y = b -> <. Z , y >. = <. Z , b >. ) | 
						
							| 8 | 7 | breq2d |  |-  ( y = b -> ( x Btwn <. Z , y >. <-> x Btwn <. Z , b >. ) ) | 
						
							| 9 | 8 | rspcv |  |-  ( b e. B -> ( A. y e. B x Btwn <. Z , y >. -> x Btwn <. Z , b >. ) ) | 
						
							| 10 | 9 | ralimdv |  |-  ( b e. B -> ( A. x e. A A. y e. B x Btwn <. Z , y >. -> A. x e. A x Btwn <. Z , b >. ) ) | 
						
							| 11 | 4 6 10 | 3anim123d |  |-  ( b e. B -> ( ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) -> ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) ) | 
						
							| 12 | 11 | anim2d |  |-  ( b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) ) ) | 
						
							| 13 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A C_ ( EE ` N ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> A C_ ( EE ` N ) ) | 
						
							| 15 |  | simplr2 |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U e. A ) | 
						
							| 16 | 14 15 | sseldd |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U e. ( EE ` N ) ) | 
						
							| 17 |  | simpr3 |  |-  ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) -> A. x e. A x Btwn <. Z , b >. ) | 
						
							| 18 |  | simp2 |  |-  ( ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) -> U e. A ) | 
						
							| 19 |  | breq1 |  |-  ( x = U -> ( x Btwn <. Z , b >. <-> U Btwn <. Z , b >. ) ) | 
						
							| 20 | 19 | rspccva |  |-  ( ( A. x e. A x Btwn <. Z , b >. /\ U e. A ) -> U Btwn <. Z , b >. ) | 
						
							| 21 | 17 18 20 | syl2an |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> U Btwn <. Z , b >. ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U Btwn <. Z , b >. ) | 
						
							| 23 | 16 22 | jca |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) ) | 
						
							| 24 | 13 | sselda |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> p e. ( EE ` N ) ) | 
						
							| 25 | 17 | adantr |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. x e. A x Btwn <. Z , b >. ) | 
						
							| 26 |  | breq1 |  |-  ( x = p -> ( x Btwn <. Z , b >. <-> p Btwn <. Z , b >. ) ) | 
						
							| 27 | 26 | rspccva |  |-  ( ( A. x e. A x Btwn <. Z , b >. /\ p e. A ) -> p Btwn <. Z , b >. ) | 
						
							| 28 | 25 27 | sylan |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> p Btwn <. Z , b >. ) | 
						
							| 29 | 23 24 28 | jca32 |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) /\ ( p e. ( EE ` N ) /\ p Btwn <. Z , b >. ) ) ) | 
						
							| 30 |  | an4 |  |-  ( ( ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) /\ ( p e. ( EE ` N ) /\ p Btwn <. Z , b >. ) ) <-> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) ) | 
						
							| 31 | 29 30 | sylib |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) ) | 
						
							| 32 |  | simp2 |  |-  ( ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) -> b e. ( EE ` N ) ) | 
						
							| 33 |  | simpl2r |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> Z =/= U ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> Z =/= U ) | 
						
							| 35 |  | simpl |  |-  ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) | 
						
							| 36 | 35 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) | 
						
							| 37 |  | eqcom |  |-  ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( U ` i ) ) | 
						
							| 38 |  | oveq2 |  |-  ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) | 
						
							| 39 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 40 | 38 39 | eqtrdi |  |-  ( t = 0 -> ( 1 - t ) = 1 ) | 
						
							| 41 | 40 | oveq1d |  |-  ( t = 0 -> ( ( 1 - t ) x. ( Z ` i ) ) = ( 1 x. ( Z ` i ) ) ) | 
						
							| 42 |  | oveq1 |  |-  ( t = 0 -> ( t x. ( b ` i ) ) = ( 0 x. ( b ` i ) ) ) | 
						
							| 43 | 41 42 | oveq12d |  |-  ( t = 0 -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) ) | 
						
							| 44 | 43 | eqeq1d |  |-  ( t = 0 -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( U ` i ) <-> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) | 
						
							| 45 | 37 44 | bitrid |  |-  ( t = 0 -> ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) | 
						
							| 46 | 45 | ralbidv |  |-  ( t = 0 -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) | 
						
							| 47 | 46 | biimpac |  |-  ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ t = 0 ) -> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) | 
						
							| 48 |  | simpl2l |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> Z e. ( EE ` N ) ) | 
						
							| 49 |  | simpl3l |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> U e. ( EE ` N ) ) | 
						
							| 50 |  | eqeefv |  |-  ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 51 | 48 49 50 | syl2anc |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 52 |  | fveecn |  |-  ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 53 | 48 52 | sylan |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 54 |  | simp1r |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> b e. ( EE ` N ) ) | 
						
							| 55 | 54 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) | 
						
							| 56 |  | fveecn |  |-  ( ( b e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) | 
						
							| 57 | 55 56 | sylancom |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) | 
						
							| 58 |  | mullid |  |-  ( ( Z ` i ) e. CC -> ( 1 x. ( Z ` i ) ) = ( Z ` i ) ) | 
						
							| 59 |  | mul02 |  |-  ( ( b ` i ) e. CC -> ( 0 x. ( b ` i ) ) = 0 ) | 
						
							| 60 | 58 59 | oveqan12d |  |-  ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( ( Z ` i ) + 0 ) ) | 
						
							| 61 |  | addrid |  |-  ( ( Z ` i ) e. CC -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) | 
						
							| 63 | 60 62 | eqtrd |  |-  ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( Z ` i ) ) | 
						
							| 64 | 53 57 63 | syl2anc |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( Z ` i ) ) | 
						
							| 65 | 64 | eqeq1d |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) <-> ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 66 | 65 | ralbidva |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 67 | 51 66 | bitr4d |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) | 
						
							| 68 | 47 67 | imbitrrid |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ t = 0 ) -> Z = U ) ) | 
						
							| 69 | 68 | expdimp |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) -> ( t = 0 -> Z = U ) ) | 
						
							| 70 | 36 69 | sylan2 |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( t = 0 -> Z = U ) ) | 
						
							| 71 | 70 | necon3d |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( Z =/= U -> t =/= 0 ) ) | 
						
							| 72 | 34 71 | mpd |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> t =/= 0 ) | 
						
							| 73 |  | simp1l |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 74 |  | simp2l |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> Z e. ( EE ` N ) ) | 
						
							| 75 | 73 74 54 | 3jca |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) | 
						
							| 76 |  | simp2l |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 77 |  | elicc01 |  |-  ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) | 
						
							| 78 | 77 | simp1bi |  |-  ( t e. ( 0 [,] 1 ) -> t e. RR ) | 
						
							| 79 | 76 78 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. RR ) | 
						
							| 80 |  | simp2r |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. ( 0 [,] 1 ) ) | 
						
							| 81 |  | elicc01 |  |-  ( s e. ( 0 [,] 1 ) <-> ( s e. RR /\ 0 <_ s /\ s <_ 1 ) ) | 
						
							| 82 | 81 | simp1bi |  |-  ( s e. ( 0 [,] 1 ) -> s e. RR ) | 
						
							| 83 | 80 82 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. RR ) | 
						
							| 84 | 79 83 | letrid |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( t <_ s \/ s <_ t ) ) | 
						
							| 85 |  | simpr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> t <_ s ) | 
						
							| 86 | 79 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> t e. RR ) | 
						
							| 87 | 77 | simp2bi |  |-  ( t e. ( 0 [,] 1 ) -> 0 <_ t ) | 
						
							| 88 | 76 87 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 <_ t ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 <_ t ) | 
						
							| 90 | 83 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> s e. RR ) | 
						
							| 91 |  | 0red |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 e. RR ) | 
						
							| 92 |  | simp3 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t =/= 0 ) | 
						
							| 93 | 79 88 92 | ne0gt0d |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 < t ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 < t ) | 
						
							| 95 | 91 86 90 94 85 | ltletrd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 < s ) | 
						
							| 96 |  | divelunit |  |-  ( ( ( t e. RR /\ 0 <_ t ) /\ ( s e. RR /\ 0 < s ) ) -> ( ( t / s ) e. ( 0 [,] 1 ) <-> t <_ s ) ) | 
						
							| 97 | 86 89 90 95 96 | syl22anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> ( ( t / s ) e. ( 0 [,] 1 ) <-> t <_ s ) ) | 
						
							| 98 | 85 97 | mpbird |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> ( t / s ) e. ( 0 [,] 1 ) ) | 
						
							| 99 |  | simp12 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> Z e. ( EE ` N ) ) | 
						
							| 100 | 99 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 101 | 100 52 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 102 |  | simp13 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> b e. ( EE ` N ) ) | 
						
							| 103 | 102 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) | 
						
							| 104 | 103 56 | sylancom |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) | 
						
							| 105 | 78 | recnd |  |-  ( t e. ( 0 [,] 1 ) -> t e. CC ) | 
						
							| 106 | 76 105 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. CC ) | 
						
							| 107 | 106 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t e. CC ) | 
						
							| 108 | 82 | recnd |  |-  ( s e. ( 0 [,] 1 ) -> s e. CC ) | 
						
							| 109 | 80 108 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. CC ) | 
						
							| 110 | 109 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s e. CC ) | 
						
							| 111 |  | 0red |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 e. RR ) | 
						
							| 112 | 79 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t e. RR ) | 
						
							| 113 | 83 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s e. RR ) | 
						
							| 114 | 88 | ad2antrr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 <_ t ) | 
						
							| 115 |  | simpll3 |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t =/= 0 ) | 
						
							| 116 | 112 114 115 | ne0gt0d |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 < t ) | 
						
							| 117 |  | simplr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t <_ s ) | 
						
							| 118 | 111 112 113 116 117 | ltletrd |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 < s ) | 
						
							| 119 | 118 | gt0ne0d |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s =/= 0 ) | 
						
							| 120 |  | divcl |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( t / s ) e. CC ) | 
						
							| 121 | 120 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( t / s ) e. CC ) | 
						
							| 122 |  | ax-1cn |  |-  1 e. CC | 
						
							| 123 |  | simpr2 |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> s e. CC ) | 
						
							| 124 |  | subcl |  |-  ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) | 
						
							| 125 | 122 123 124 | sylancr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( 1 - s ) e. CC ) | 
						
							| 126 |  | simpll |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( Z ` i ) e. CC ) | 
						
							| 127 | 125 126 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) | 
						
							| 128 |  | simplr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( b ` i ) e. CC ) | 
						
							| 129 | 123 128 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( s x. ( b ` i ) ) e. CC ) | 
						
							| 130 | 121 127 129 | adddid |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) = ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 132 |  | subcl |  |-  ( ( 1 e. CC /\ ( t / s ) e. CC ) -> ( 1 - ( t / s ) ) e. CC ) | 
						
							| 133 | 122 121 132 | sylancr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( 1 - ( t / s ) ) e. CC ) | 
						
							| 134 | 133 126 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 135 | 121 127 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) e. CC ) | 
						
							| 136 | 121 129 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( s x. ( b ` i ) ) ) e. CC ) | 
						
							| 137 | 134 135 136 | addassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 138 | 121 125 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( 1 - s ) ) e. CC ) | 
						
							| 139 | 133 138 126 | adddird |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) ) | 
						
							| 140 |  | simp2 |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> s e. CC ) | 
						
							| 141 |  | subdi |  |-  ( ( ( t / s ) e. CC /\ 1 e. CC /\ s e. CC ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) | 
						
							| 142 | 122 141 | mp3an2 |  |-  ( ( ( t / s ) e. CC /\ s e. CC ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) | 
						
							| 143 | 120 140 142 | syl2anc |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) | 
						
							| 144 | 120 | mulridd |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. 1 ) = ( t / s ) ) | 
						
							| 145 |  | divcan1 |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. s ) = t ) | 
						
							| 146 | 144 145 | oveq12d |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) = ( ( t / s ) - t ) ) | 
						
							| 147 | 143 146 | eqtrd |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( t / s ) - t ) ) | 
						
							| 148 | 147 | oveq2d |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) ) | 
						
							| 149 |  | simp1 |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> t e. CC ) | 
						
							| 150 |  | npncan |  |-  ( ( 1 e. CC /\ ( t / s ) e. CC /\ t e. CC ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) = ( 1 - t ) ) | 
						
							| 151 | 122 120 149 150 | mp3an2i |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) = ( 1 - t ) ) | 
						
							| 152 | 148 151 | eqtrd |  |-  ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( 1 - t ) ) | 
						
							| 153 | 152 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( 1 - t ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) | 
						
							| 155 | 121 125 126 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) = ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) | 
						
							| 156 | 155 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) ) | 
						
							| 157 | 139 154 156 | 3eqtr3rd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) | 
						
							| 158 | 121 123 128 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. s ) x. ( b ` i ) ) = ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) | 
						
							| 159 | 145 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. s ) = t ) | 
						
							| 160 | 159 | oveq1d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. s ) x. ( b ` i ) ) = ( t x. ( b ` i ) ) ) | 
						
							| 161 | 158 160 | eqtr3d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( s x. ( b ` i ) ) ) = ( t x. ( b ` i ) ) ) | 
						
							| 162 | 157 161 | oveq12d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) | 
						
							| 163 | 131 137 162 | 3eqtr2rd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 164 | 101 104 107 110 119 163 | syl23anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 165 | 164 | ralrimiva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 166 |  | oveq2 |  |-  ( r = ( t / s ) -> ( 1 - r ) = ( 1 - ( t / s ) ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( r = ( t / s ) -> ( ( 1 - r ) x. ( Z ` i ) ) = ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) ) | 
						
							| 168 |  | oveq1 |  |-  ( r = ( t / s ) -> ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) = ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 169 | 167 168 | oveq12d |  |-  ( r = ( t / s ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 170 | 169 | eqeq2d |  |-  ( r = ( t / s ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 171 | 170 | ralbidv |  |-  ( r = ( t / s ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 172 | 171 | rspcev |  |-  ( ( ( t / s ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 173 | 98 165 172 | syl2anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 174 | 173 | ex |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( t <_ s -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 175 | 81 | simp2bi |  |-  ( s e. ( 0 [,] 1 ) -> 0 <_ s ) | 
						
							| 176 | 80 175 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 <_ s ) | 
						
							| 177 |  | divelunit |  |-  ( ( ( s e. RR /\ 0 <_ s ) /\ ( t e. RR /\ 0 < t ) ) -> ( ( s / t ) e. ( 0 [,] 1 ) <-> s <_ t ) ) | 
						
							| 178 | 83 176 79 93 177 | syl22anc |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( s / t ) e. ( 0 [,] 1 ) <-> s <_ t ) ) | 
						
							| 179 | 178 | biimpar |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> ( s / t ) e. ( 0 [,] 1 ) ) | 
						
							| 180 |  | simp112 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) | 
						
							| 181 |  | simp3 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 182 | 180 181 52 | syl2anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 183 |  | simp113 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) | 
						
							| 184 | 183 181 56 | syl2anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) | 
						
							| 185 |  | simp12r |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> s e. ( 0 [,] 1 ) ) | 
						
							| 186 | 185 108 | syl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> s e. CC ) | 
						
							| 187 |  | simp12l |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t e. ( 0 [,] 1 ) ) | 
						
							| 188 | 187 105 | syl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t e. CC ) | 
						
							| 189 |  | simp13 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t =/= 0 ) | 
						
							| 190 |  | divcl |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( s / t ) e. CC ) | 
						
							| 191 | 190 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( s / t ) e. CC ) | 
						
							| 192 |  | simpr2 |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> t e. CC ) | 
						
							| 193 |  | subcl |  |-  ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) | 
						
							| 194 | 122 192 193 | sylancr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( 1 - t ) e. CC ) | 
						
							| 195 |  | simpll |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( Z ` i ) e. CC ) | 
						
							| 196 | 194 195 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) | 
						
							| 197 |  | simplr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( b ` i ) e. CC ) | 
						
							| 198 | 192 197 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( t x. ( b ` i ) ) e. CC ) | 
						
							| 199 | 191 196 198 | adddid |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) = ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) | 
						
							| 200 | 199 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 201 |  | subcl |  |-  ( ( 1 e. CC /\ ( s / t ) e. CC ) -> ( 1 - ( s / t ) ) e. CC ) | 
						
							| 202 | 122 191 201 | sylancr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( 1 - ( s / t ) ) e. CC ) | 
						
							| 203 | 202 195 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 204 | 191 196 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) e. CC ) | 
						
							| 205 | 191 198 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( t x. ( b ` i ) ) ) e. CC ) | 
						
							| 206 | 203 204 205 | addassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 207 |  | simp2 |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> t e. CC ) | 
						
							| 208 |  | subdi |  |-  ( ( ( s / t ) e. CC /\ 1 e. CC /\ t e. CC ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) | 
						
							| 209 | 122 208 | mp3an2 |  |-  ( ( ( s / t ) e. CC /\ t e. CC ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) | 
						
							| 210 | 190 207 209 | syl2anc |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) | 
						
							| 211 | 190 | mulridd |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. 1 ) = ( s / t ) ) | 
						
							| 212 |  | divcan1 |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. t ) = s ) | 
						
							| 213 | 211 212 | oveq12d |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) = ( ( s / t ) - s ) ) | 
						
							| 214 | 210 213 | eqtrd |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( s / t ) - s ) ) | 
						
							| 215 | 214 | oveq2d |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) = ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) ) | 
						
							| 216 |  | simp1 |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> s e. CC ) | 
						
							| 217 |  | npncan |  |-  ( ( 1 e. CC /\ ( s / t ) e. CC /\ s e. CC ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) = ( 1 - s ) ) | 
						
							| 218 | 122 190 216 217 | mp3an2i |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) = ( 1 - s ) ) | 
						
							| 219 | 215 218 | eqtr2d |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( 1 - s ) = ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) ) | 
						
							| 220 | 219 | oveq1d |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) ) | 
						
							| 221 | 220 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) ) | 
						
							| 222 | 191 194 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( 1 - t ) ) e. CC ) | 
						
							| 223 | 202 222 195 | adddird |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) ) | 
						
							| 224 | 191 194 195 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) = ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) | 
						
							| 225 | 224 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) ) | 
						
							| 226 | 221 223 225 | 3eqtrrd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) = ( ( 1 - s ) x. ( Z ` i ) ) ) | 
						
							| 227 | 191 192 197 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) | 
						
							| 228 | 212 | oveq1d |  |-  ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( s x. ( b ` i ) ) ) | 
						
							| 229 | 228 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( s x. ( b ` i ) ) ) | 
						
							| 230 | 227 229 | eqtr3d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( t x. ( b ` i ) ) ) = ( s x. ( b ` i ) ) ) | 
						
							| 231 | 226 230 | oveq12d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) | 
						
							| 232 | 200 206 231 | 3eqtr2rd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 233 | 182 184 186 188 189 232 | syl23anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 234 | 233 | 3expa |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 235 | 234 | ralrimiva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 236 |  | oveq2 |  |-  ( r = ( s / t ) -> ( 1 - r ) = ( 1 - ( s / t ) ) ) | 
						
							| 237 | 236 | oveq1d |  |-  ( r = ( s / t ) -> ( ( 1 - r ) x. ( Z ` i ) ) = ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) ) | 
						
							| 238 |  | oveq1 |  |-  ( r = ( s / t ) -> ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) = ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) | 
						
							| 239 | 237 238 | oveq12d |  |-  ( r = ( s / t ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 240 | 239 | eqeq2d |  |-  ( r = ( s / t ) -> ( ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 241 | 240 | ralbidv |  |-  ( r = ( s / t ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 242 | 241 | rspcev |  |-  ( ( ( s / t ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 243 | 179 235 242 | syl2anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 244 | 243 | ex |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( s <_ t -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 245 | 174 244 | orim12d |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( t <_ s \/ s <_ t ) -> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) | 
						
							| 246 |  | r19.43 |  |-  ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 247 | 245 246 | imbitrrdi |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( t <_ s \/ s <_ t ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) | 
						
							| 248 | 84 247 | mpd |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 249 |  | id |  |-  ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) | 
						
							| 250 |  | oveq2 |  |-  ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( r x. ( p ` i ) ) = ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 251 | 250 | oveq2d |  |-  ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 252 | 249 251 | eqeqan12d |  |-  ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 253 | 252 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 254 |  | ralbi |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 255 | 253 254 | syl |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 256 |  | id |  |-  ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) | 
						
							| 257 |  | oveq2 |  |-  ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( r x. ( U ` i ) ) = ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) | 
						
							| 258 | 257 | oveq2d |  |-  ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) | 
						
							| 259 | 256 258 | eqeqan12rd |  |-  ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 260 | 259 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 261 |  | ralbi |  |-  ( A. i e. ( 1 ... N ) ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 262 | 260 261 | syl |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) | 
						
							| 263 | 255 262 | orbi12d |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) | 
						
							| 264 | 263 | rexbidv |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) | 
						
							| 265 | 248 264 | syl5ibrcom |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 266 | 265 | 3expia |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( t =/= 0 -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 267 | 266 | com23 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 268 | 75 267 | sylan |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 269 | 268 | imp |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 270 | 72 269 | mpd |  |-  ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) | 
						
							| 271 | 270 | ex |  |-  ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 272 | 271 | rexlimdvva |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 273 |  | simp3l |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> U e. ( EE ` N ) ) | 
						
							| 274 |  | brbtwn |  |-  ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) -> ( U Btwn <. Z , b >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) | 
						
							| 275 | 273 74 54 274 | syl3anc |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( U Btwn <. Z , b >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) | 
						
							| 276 |  | simp3r |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> p e. ( EE ` N ) ) | 
						
							| 277 |  | brbtwn |  |-  ( ( p e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) -> ( p Btwn <. Z , b >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 278 | 276 74 54 277 | syl3anc |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( p Btwn <. Z , b >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 279 | 275 278 | anbi12d |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 280 |  | r19.26 |  |-  ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 281 | 280 | 2rexbii |  |-  ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 282 |  | reeanv |  |-  ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 283 | 281 282 | bitri |  |-  ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) | 
						
							| 284 | 279 283 | bitr4di |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) | 
						
							| 285 |  | brbtwn |  |-  ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ p e. ( EE ` N ) ) -> ( U Btwn <. Z , p >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) ) ) | 
						
							| 286 | 273 74 276 285 | syl3anc |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( U Btwn <. Z , p >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) ) ) | 
						
							| 287 |  | brbtwn |  |-  ( ( p e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( p Btwn <. Z , U >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) | 
						
							| 288 | 276 74 273 287 | syl3anc |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( p Btwn <. Z , U >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) | 
						
							| 289 | 286 288 | orbi12d |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 290 |  | r19.43 |  |-  ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) | 
						
							| 291 | 289 290 | bitr4di |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) | 
						
							| 292 | 272 284 291 | 3imtr4d |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 293 | 292 | 3expia |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) | 
						
							| 294 | 293 | impd |  |-  ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 295 | 32 294 | sylanl2 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 296 | 295 | 3adantr2 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 297 | 296 | adantr |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 298 | 31 297 | mpd |  |-  ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) | 
						
							| 299 | 298 | ralrimiva |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) | 
						
							| 300 | 299 | 3exp2 |  |-  ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) | 
						
							| 301 | 12 300 | syl6 |  |-  ( b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) | 
						
							| 302 | 301 | exlimiv |  |-  ( E. b b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) | 
						
							| 303 | 3 302 | sylbi |  |-  ( B =/= (/) -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) | 
						
							| 304 | 303 | com4l |  |-  ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( B =/= (/) -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) | 
						
							| 305 | 304 | 3impd |  |-  ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) | 
						
							| 306 | 305 | imp32 |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) | 
						
							| 307 | 1 | sseq2i |  |-  ( A C_ D <-> A C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } ) | 
						
							| 308 |  | ssrab |  |-  ( A C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } <-> ( A C_ ( EE ` N ) /\ A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 309 | 307 308 | bitri |  |-  ( A C_ D <-> ( A C_ ( EE ` N ) /\ A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) | 
						
							| 310 | 2 306 309 | sylanbrc |  |-  ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A C_ D ) |