Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem5.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
2 |
|
axcontlem5.2 |
|- F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
3 |
1 2
|
axcontlem2 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D -1-1-onto-> ( 0 [,) +oo ) ) |
4 |
|
f1of |
|- ( F : D -1-1-onto-> ( 0 [,) +oo ) -> F : D --> ( 0 [,) +oo ) ) |
5 |
3 4
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D --> ( 0 [,) +oo ) ) |
6 |
5
|
ffvelrnda |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( F ` P ) e. ( 0 [,) +oo ) ) |
7 |
|
eleq1 |
|- ( ( F ` P ) = T -> ( ( F ` P ) e. ( 0 [,) +oo ) <-> T e. ( 0 [,) +oo ) ) ) |
8 |
6 7
|
syl5ibcom |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T -> T e. ( 0 [,) +oo ) ) ) |
9 |
|
simpl |
|- ( ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) -> T e. ( 0 [,) +oo ) ) |
10 |
9
|
a1i |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) -> T e. ( 0 [,) +oo ) ) ) |
11 |
|
f1ofn |
|- ( F : D -1-1-onto-> ( 0 [,) +oo ) -> F Fn D ) |
12 |
3 11
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F Fn D ) |
13 |
|
fnbrfvb |
|- ( ( F Fn D /\ P e. D ) -> ( ( F ` P ) = T <-> P F T ) ) |
14 |
12 13
|
sylan |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T <-> P F T ) ) |
15 |
14
|
3adant3 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( ( F ` P ) = T <-> P F T ) ) |
16 |
|
eleq1 |
|- ( x = P -> ( x e. D <-> P e. D ) ) |
17 |
|
fveq1 |
|- ( x = P -> ( x ` i ) = ( P ` i ) ) |
18 |
17
|
eqeq1d |
|- ( x = P -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
19 |
18
|
ralbidv |
|- ( x = P -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
20 |
19
|
anbi2d |
|- ( x = P -> ( ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
21 |
16 20
|
anbi12d |
|- ( x = P -> ( ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) |
22 |
|
eleq1 |
|- ( t = T -> ( t e. ( 0 [,) +oo ) <-> T e. ( 0 [,) +oo ) ) ) |
23 |
|
oveq2 |
|- ( t = T -> ( 1 - t ) = ( 1 - T ) ) |
24 |
23
|
oveq1d |
|- ( t = T -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - T ) x. ( Z ` i ) ) ) |
25 |
|
oveq1 |
|- ( t = T -> ( t x. ( U ` i ) ) = ( T x. ( U ` i ) ) ) |
26 |
24 25
|
oveq12d |
|- ( t = T -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) |
27 |
26
|
eqeq2d |
|- ( t = T -> ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) |
28 |
27
|
ralbidv |
|- ( t = T -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) |
29 |
22 28
|
anbi12d |
|- ( t = T -> ( ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
30 |
29
|
anbi2d |
|- ( t = T -> ( ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) |
31 |
|
anass |
|- ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) ) ) |
32 |
|
anidm |
|- ( ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) <-> T e. ( 0 [,) +oo ) ) |
33 |
32
|
anbi2i |
|- ( ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) ) <-> ( P e. D /\ T e. ( 0 [,) +oo ) ) ) |
34 |
31 33
|
bitr2i |
|- ( ( P e. D /\ T e. ( 0 [,) +oo ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) ) |
35 |
34
|
anbi1i |
|- ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) |
36 |
|
anass |
|- ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
37 |
|
anass |
|- ( ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
38 |
35 36 37
|
3bitr3i |
|- ( ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
39 |
30 38
|
bitrdi |
|- ( t = T -> ( ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) |
40 |
21 39 2
|
brabg |
|- ( ( P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) |
41 |
40
|
bianabs |
|- ( ( P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
42 |
41
|
3adant1 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
43 |
15 42
|
bitrd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |
44 |
43
|
3expia |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( T e. ( 0 [,) +oo ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) |
45 |
8 10 44
|
pm5.21ndd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |