| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem5.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | axcontlem5.2 |  |-  F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 3 | 1 2 | axcontlem2 |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D -1-1-onto-> ( 0 [,) +oo ) ) | 
						
							| 4 |  | f1of |  |-  ( F : D -1-1-onto-> ( 0 [,) +oo ) -> F : D --> ( 0 [,) +oo ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D --> ( 0 [,) +oo ) ) | 
						
							| 6 | 5 | ffvelcdmda |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( F ` P ) e. ( 0 [,) +oo ) ) | 
						
							| 7 |  | eleq1 |  |-  ( ( F ` P ) = T -> ( ( F ` P ) e. ( 0 [,) +oo ) <-> T e. ( 0 [,) +oo ) ) ) | 
						
							| 8 | 6 7 | syl5ibcom |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T -> T e. ( 0 [,) +oo ) ) ) | 
						
							| 9 |  | simpl |  |-  ( ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) -> T e. ( 0 [,) +oo ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) -> T e. ( 0 [,) +oo ) ) ) | 
						
							| 11 |  | f1ofn |  |-  ( F : D -1-1-onto-> ( 0 [,) +oo ) -> F Fn D ) | 
						
							| 12 | 3 11 | syl |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F Fn D ) | 
						
							| 13 |  | fnbrfvb |  |-  ( ( F Fn D /\ P e. D ) -> ( ( F ` P ) = T <-> P F T ) ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T <-> P F T ) ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( ( F ` P ) = T <-> P F T ) ) | 
						
							| 16 |  | eleq1 |  |-  ( x = P -> ( x e. D <-> P e. D ) ) | 
						
							| 17 |  | fveq1 |  |-  ( x = P -> ( x ` i ) = ( P ` i ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( x = P -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 19 | 18 | ralbidv |  |-  ( x = P -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( x = P -> ( ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) | 
						
							| 21 | 16 20 | anbi12d |  |-  ( x = P -> ( ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 22 |  | eleq1 |  |-  ( t = T -> ( t e. ( 0 [,) +oo ) <-> T e. ( 0 [,) +oo ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( t = T -> ( 1 - t ) = ( 1 - T ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( t = T -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - T ) x. ( Z ` i ) ) ) | 
						
							| 25 |  | oveq1 |  |-  ( t = T -> ( t x. ( U ` i ) ) = ( T x. ( U ` i ) ) ) | 
						
							| 26 | 24 25 | oveq12d |  |-  ( t = T -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( t = T -> ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) | 
						
							| 28 | 27 | ralbidv |  |-  ( t = T -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) | 
						
							| 29 | 22 28 | anbi12d |  |-  ( t = T -> ( ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 30 | 29 | anbi2d |  |-  ( t = T -> ( ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 31 |  | anass |  |-  ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) ) ) | 
						
							| 32 |  | anidm |  |-  ( ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) <-> T e. ( 0 [,) +oo ) ) | 
						
							| 33 | 32 | anbi2i |  |-  ( ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ T e. ( 0 [,) +oo ) ) ) <-> ( P e. D /\ T e. ( 0 [,) +oo ) ) ) | 
						
							| 34 | 31 33 | bitr2i |  |-  ( ( P e. D /\ T e. ( 0 [,) +oo ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) ) | 
						
							| 35 | 34 | anbi1i |  |-  ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) | 
						
							| 36 |  | anass |  |-  ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 37 |  | anass |  |-  ( ( ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ T e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 38 | 35 36 37 | 3bitr3i |  |-  ( ( P e. D /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 39 | 30 38 | bitrdi |  |-  ( t = T -> ( ( P e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 40 | 21 39 2 | brabg |  |-  ( ( P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( ( P e. D /\ T e. ( 0 [,) +oo ) ) /\ ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 41 | 40 | bianabs |  |-  ( ( P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 42 | 41 | 3adant1 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( P F T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 43 | 15 42 | bitrd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D /\ T e. ( 0 [,) +oo ) ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) | 
						
							| 44 | 43 | 3expia |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( T e. ( 0 [,) +oo ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 45 | 8 10 44 | pm5.21ndd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = T <-> ( T e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - T ) x. ( Z ` i ) ) + ( T x. ( U ` i ) ) ) ) ) ) |