Metamath Proof Explorer


Theorem axcontlem5

Description: Lemma for axcont . Compute the value of F . (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypotheses axcontlem5.1 D=p𝔼N|UBtwnZppBtwnZU
axcontlem5.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
Assertion axcontlem5 NZ𝔼NU𝔼NZUPDFP=TT0+∞i1NPi=1TZi+TUi

Proof

Step Hyp Ref Expression
1 axcontlem5.1 D=p𝔼N|UBtwnZppBtwnZU
2 axcontlem5.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
3 1 2 axcontlem2 NZ𝔼NU𝔼NZUF:D1-1 onto0+∞
4 f1of F:D1-1 onto0+∞F:D0+∞
5 3 4 syl NZ𝔼NU𝔼NZUF:D0+∞
6 5 ffvelcdmda NZ𝔼NU𝔼NZUPDFP0+∞
7 eleq1 FP=TFP0+∞T0+∞
8 6 7 syl5ibcom NZ𝔼NU𝔼NZUPDFP=TT0+∞
9 simpl T0+∞i1NPi=1TZi+TUiT0+∞
10 9 a1i NZ𝔼NU𝔼NZUPDT0+∞i1NPi=1TZi+TUiT0+∞
11 f1ofn F:D1-1 onto0+∞FFnD
12 3 11 syl NZ𝔼NU𝔼NZUFFnD
13 fnbrfvb FFnDPDFP=TPFT
14 12 13 sylan NZ𝔼NU𝔼NZUPDFP=TPFT
15 14 3adant3 NZ𝔼NU𝔼NZUPDT0+∞FP=TPFT
16 eleq1 x=PxDPD
17 fveq1 x=Pxi=Pi
18 17 eqeq1d x=Pxi=1tZi+tUiPi=1tZi+tUi
19 18 ralbidv x=Pi1Nxi=1tZi+tUii1NPi=1tZi+tUi
20 19 anbi2d x=Pt0+∞i1Nxi=1tZi+tUit0+∞i1NPi=1tZi+tUi
21 16 20 anbi12d x=PxDt0+∞i1Nxi=1tZi+tUiPDt0+∞i1NPi=1tZi+tUi
22 eleq1 t=Tt0+∞T0+∞
23 oveq2 t=T1t=1T
24 23 oveq1d t=T1tZi=1TZi
25 oveq1 t=TtUi=TUi
26 24 25 oveq12d t=T1tZi+tUi=1TZi+TUi
27 26 eqeq2d t=TPi=1tZi+tUiPi=1TZi+TUi
28 27 ralbidv t=Ti1NPi=1tZi+tUii1NPi=1TZi+TUi
29 22 28 anbi12d t=Tt0+∞i1NPi=1tZi+tUiT0+∞i1NPi=1TZi+TUi
30 29 anbi2d t=TPDt0+∞i1NPi=1tZi+tUiPDT0+∞i1NPi=1TZi+TUi
31 anass PDT0+∞T0+∞PDT0+∞T0+∞
32 anidm T0+∞T0+∞T0+∞
33 32 anbi2i PDT0+∞T0+∞PDT0+∞
34 31 33 bitr2i PDT0+∞PDT0+∞T0+∞
35 34 anbi1i PDT0+∞i1NPi=1TZi+TUiPDT0+∞T0+∞i1NPi=1TZi+TUi
36 anass PDT0+∞i1NPi=1TZi+TUiPDT0+∞i1NPi=1TZi+TUi
37 anass PDT0+∞T0+∞i1NPi=1TZi+TUiPDT0+∞T0+∞i1NPi=1TZi+TUi
38 35 36 37 3bitr3i PDT0+∞i1NPi=1TZi+TUiPDT0+∞T0+∞i1NPi=1TZi+TUi
39 30 38 bitrdi t=TPDt0+∞i1NPi=1tZi+tUiPDT0+∞T0+∞i1NPi=1TZi+TUi
40 21 39 2 brabg PDT0+∞PFTPDT0+∞T0+∞i1NPi=1TZi+TUi
41 40 bianabs PDT0+∞PFTT0+∞i1NPi=1TZi+TUi
42 41 3adant1 NZ𝔼NU𝔼NZUPDT0+∞PFTT0+∞i1NPi=1TZi+TUi
43 15 42 bitrd NZ𝔼NU𝔼NZUPDT0+∞FP=TT0+∞i1NPi=1TZi+TUi
44 43 3expia NZ𝔼NU𝔼NZUPDT0+∞FP=TT0+∞i1NPi=1TZi+TUi
45 8 10 44 pm5.21ndd NZ𝔼NU𝔼NZUPDFP=TT0+∞i1NPi=1TZi+TUi