Metamath Proof Explorer


Theorem axcontlem6

Description: Lemma for axcont . State the defining properties of the value of F . (Contributed by Scott Fenton, 19-Jun-2013)

Ref Expression
Hypotheses axcontlem5.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
axcontlem5.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
Assertion axcontlem6 N Z 𝔼 N U 𝔼 N Z U P D F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i

Proof

Step Hyp Ref Expression
1 axcontlem5.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
2 axcontlem5.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
3 eqid F P = F P
4 2 axcontlem1 F = y s | y D s 0 +∞ j 1 N y j = 1 s Z j + s U j
5 1 4 axcontlem5 N Z 𝔼 N U 𝔼 N Z U P D F P = F P F P 0 +∞ j 1 N P j = 1 F P Z j + F P U j
6 3 5 mpbii N Z 𝔼 N U 𝔼 N Z U P D F P 0 +∞ j 1 N P j = 1 F P Z j + F P U j
7 fveq2 j = i P j = P i
8 fveq2 j = i Z j = Z i
9 8 oveq2d j = i 1 F P Z j = 1 F P Z i
10 fveq2 j = i U j = U i
11 10 oveq2d j = i F P U j = F P U i
12 9 11 oveq12d j = i 1 F P Z j + F P U j = 1 F P Z i + F P U i
13 7 12 eqeq12d j = i P j = 1 F P Z j + F P U j P i = 1 F P Z i + F P U i
14 13 cbvralvw j 1 N P j = 1 F P Z j + F P U j i 1 N P i = 1 F P Z i + F P U i
15 14 anbi2i F P 0 +∞ j 1 N P j = 1 F P Z j + F P U j F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i
16 6 15 sylib N Z 𝔼 N U 𝔼 N Z U P D F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i