Metamath Proof Explorer


Theorem axcontlem7

Description: Lemma for axcont . Given two points in D , one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypotheses axcontlem7.1 D=p𝔼N|UBtwnZppBtwnZU
axcontlem7.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
Assertion axcontlem7 NZ𝔼NU𝔼NZUPDQDPBtwnZQFPFQ

Proof

Step Hyp Ref Expression
1 axcontlem7.1 D=p𝔼N|UBtwnZppBtwnZU
2 axcontlem7.2 F=xt|xDt0+∞i1Nxi=1tZi+tUi
3 1 ssrab3 D𝔼N
4 3 sseli PDP𝔼N
5 4 ad2antrl NZ𝔼NU𝔼NZUPDQDP𝔼N
6 simpll2 NZ𝔼NU𝔼NZUPDQDZ𝔼N
7 3 sseli QDQ𝔼N
8 7 ad2antll NZ𝔼NU𝔼NZUPDQDQ𝔼N
9 brbtwn P𝔼NZ𝔼NQ𝔼NPBtwnZQt01i1NPi=1tZi+tQi
10 5 6 8 9 syl3anc NZ𝔼NU𝔼NZUPDQDPBtwnZQt01i1NPi=1tZi+tQi
11 1 2 axcontlem6 NZ𝔼NU𝔼NZUPDFP0+∞i1NPi=1FPZi+FPUi
12 1 2 axcontlem6 NZ𝔼NU𝔼NZUQDFQ0+∞i1NQi=1FQZi+FQUi
13 11 12 anim12dan NZ𝔼NU𝔼NZUPDQDFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUi
14 an4 FP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFP0+∞FQ0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUi
15 r19.26 i1NPi=1FPZi+FPUiQi=1FQZi+FQUii1NPi=1FPZi+FPUii1NQi=1FQZi+FQUi
16 15 anbi2i FP0+∞FQ0+∞i1NPi=1FPZi+FPUiQi=1FQZi+FQUiFP0+∞FQ0+∞i1NPi=1FPZi+FPUii1NQi=1FQZi+FQUi
17 14 16 bitr4i FP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUiFP0+∞FQ0+∞i1NPi=1FPZi+FPUiQi=1FQZi+FQUi
18 id Pi=1FPZi+FPUiPi=1FPZi+FPUi
19 oveq2 Qi=1FQZi+FQUitQi=t1FQZi+FQUi
20 19 oveq2d Qi=1FQZi+FQUi1tZi+tQi=1tZi+t1FQZi+FQUi
21 18 20 eqeqan12d Pi=1FPZi+FPUiQi=1FQZi+FQUiPi=1tZi+tQi1FPZi+FPUi=1tZi+t1FQZi+FQUi
22 21 ralimi i1NPi=1FPZi+FPUiQi=1FQZi+FQUii1NPi=1tZi+tQi1FPZi+FPUi=1tZi+t1FQZi+FQUi
23 ralbi i1NPi=1tZi+tQi1FPZi+FPUi=1tZi+t1FQZi+FQUii1NPi=1tZi+tQii1N1FPZi+FPUi=1tZi+t1FQZi+FQUi
24 22 23 syl i1NPi=1FPZi+FPUiQi=1FQZi+FQUii1NPi=1tZi+tQii1N1FPZi+FPUi=1tZi+t1FQZi+FQUi
25 24 rexbidv i1NPi=1FPZi+FPUiQi=1FQZi+FQUit01i1NPi=1tZi+tQit01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUi
26 simpll2 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01Z𝔼N
27 fveecn Z𝔼Ni1NZi
28 26 27 sylan NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NZi
29 simpll3 NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01U𝔼N
30 fveecn U𝔼Ni1NUi
31 29 30 sylan NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NUi
32 elicc01 t01t0tt1
33 32 simp1bi t01t
34 33 recnd t01t
35 34 ad2antll NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01t
36 35 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1Nt
37 elrege0 FP0+∞FP0FP
38 37 simplbi FP0+∞FP
39 38 recnd FP0+∞FP
40 39 adantr FP0+∞FQ0+∞FP
41 40 ad2antrl NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FP
42 41 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFP
43 elrege0 FQ0+∞FQ0FQ
44 43 simplbi FQ0+∞FQ
45 44 recnd FQ0+∞FQ
46 45 adantl FP0+∞FQ0+∞FQ
47 46 ad2antrl NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FQ
48 47 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFQ
49 ax-1cn 1
50 simpr1 ZiUitFPFQt
51 simpr3 ZiUitFPFQFQ
52 50 51 mulcld ZiUitFPFQtFQ
53 subcl 1tFQ1tFQ
54 49 52 53 sylancr ZiUitFPFQ1tFQ
55 subcl 1FP1FP
56 49 55 mpan FP1FP
57 56 3ad2ant2 tFPFQ1FP
58 57 adantl ZiUitFPFQ1FP
59 simpll ZiUitFPFQZi
60 54 58 59 subdird ZiUitFPFQ1-tFQ-1FPZi=1tFQZi1FPZi
61 simpr2 ZiUitFPFQFP
62 nnncan1 1tFQFP1-tFQ-1FP=FPtFQ
63 49 52 61 62 mp3an2i ZiUitFPFQ1-tFQ-1FP=FPtFQ
64 63 oveq1d ZiUitFPFQ1-tFQ-1FPZi=FPtFQZi
65 subdi t1FQt1FQ=t1tFQ
66 49 65 mp3an2 tFQt1FQ=t1tFQ
67 mulrid tt1=t
68 67 adantr tFQt1=t
69 68 oveq1d tFQt1tFQ=ttFQ
70 66 69 eqtrd tFQt1FQ=ttFQ
71 50 51 70 syl2anc ZiUitFPFQt1FQ=ttFQ
72 71 oveq2d ZiUitFPFQ1-t+t1FQ=1t+t-tFQ
73 npncan 1ttFQ1t+t-tFQ=1tFQ
74 49 50 52 73 mp3an2i ZiUitFPFQ1t+t-tFQ=1tFQ
75 72 74 eqtr2d ZiUitFPFQ1tFQ=1-t+t1FQ
76 75 oveq1d ZiUitFPFQ1tFQZi=1-t+t1FQZi
77 subcl 1t1t
78 49 77 mpan t1t
79 78 3ad2ant1 tFPFQ1t
80 79 adantl ZiUitFPFQ1t
81 subcl 1FQ1FQ
82 49 81 mpan FQ1FQ
83 82 3ad2ant3 tFPFQ1FQ
84 83 adantl ZiUitFPFQ1FQ
85 50 84 mulcld ZiUitFPFQt1FQ
86 80 85 59 adddird ZiUitFPFQ1-t+t1FQZi=1tZi+t1FQZi
87 50 84 59 mulassd ZiUitFPFQt1FQZi=t1FQZi
88 87 oveq2d ZiUitFPFQ1tZi+t1FQZi=1tZi+t1FQZi
89 76 86 88 3eqtrd ZiUitFPFQ1tFQZi=1tZi+t1FQZi
90 89 oveq1d ZiUitFPFQ1tFQZi1FPZi=1tZi+t1FQZi-1FPZi
91 60 64 90 3eqtr3d ZiUitFPFQFPtFQZi=1tZi+t1FQZi-1FPZi
92 simplr ZiUitFPFQUi
93 61 52 92 subdird ZiUitFPFQFPtFQUi=FPUitFQUi
94 50 51 92 mulassd ZiUitFPFQtFQUi=tFQUi
95 94 oveq2d ZiUitFPFQFPUitFQUi=FPUitFQUi
96 93 95 eqtrd ZiUitFPFQFPtFQUi=FPUitFQUi
97 91 96 eqeq12d ZiUitFPFQFPtFQZi=FPtFQUi1tZi+t1FQZi-1FPZi=FPUitFQUi
98 58 59 mulcld ZiUitFPFQ1FPZi
99 61 92 mulcld ZiUitFPFQFPUi
100 80 59 mulcld ZiUitFPFQ1tZi
101 84 59 mulcld ZiUitFPFQ1FQZi
102 50 101 mulcld ZiUitFPFQt1FQZi
103 100 102 addcld ZiUitFPFQ1tZi+t1FQZi
104 51 92 mulcld ZiUitFPFQFQUi
105 50 104 mulcld ZiUitFPFQtFQUi
106 98 99 103 105 addsubeq4d ZiUitFPFQ1FPZi+FPUi=1tZi+t1FQZi+tFQUi1tZi+t1FQZi-1FPZi=FPUitFQUi
107 100 102 105 addassd ZiUitFPFQ1tZi+t1FQZi+tFQUi=1tZi+t1FQZi+tFQUi
108 50 101 104 adddid ZiUitFPFQt1FQZi+FQUi=t1FQZi+tFQUi
109 108 oveq2d ZiUitFPFQ1tZi+t1FQZi+FQUi=1tZi+t1FQZi+tFQUi
110 107 109 eqtr4d ZiUitFPFQ1tZi+t1FQZi+tFQUi=1tZi+t1FQZi+FQUi
111 110 eqeq2d ZiUitFPFQ1FPZi+FPUi=1tZi+t1FQZi+tFQUi1FPZi+FPUi=1tZi+t1FQZi+FQUi
112 97 106 111 3bitr2rd ZiUitFPFQ1FPZi+FPUi=1tZi+t1FQZi+FQUiFPtFQZi=FPtFQUi
113 28 31 36 42 48 112 syl23anc NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUiFPtFQZi=FPtFQUi
114 113 ralbidva NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUii1NFPtFQZi=FPtFQUi
115 36 48 mulcld NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NtFQ
116 42 115 subcld NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFPtFQ
117 mulcan1g FPtFQZiUiFPtFQZi=FPtFQUiFPtFQ=0Zi=Ui
118 116 28 31 117 syl3anc NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFPtFQZi=FPtFQUiFPtFQ=0Zi=Ui
119 118 ralbidva NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFPtFQZi=FPtFQUii1NFPtFQ=0Zi=Ui
120 r19.32v i1NFPtFQ=0Zi=UiFPtFQ=0i1NZi=Ui
121 simplr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01ZU
122 121 neneqd NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01¬Z=U
123 biorf ¬Z=UFPtFQ=0Z=UFPtFQ=0
124 orcom Z=UFPtFQ=0FPtFQ=0Z=U
125 123 124 bitrdi ¬Z=UFPtFQ=0FPtFQ=0Z=U
126 122 125 syl NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FPtFQ=0FPtFQ=0Z=U
127 35 47 mulcld NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01tFQ
128 41 127 subeq0ad NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FPtFQ=0FP=tFQ
129 eqeefv Z𝔼NU𝔼NZ=Ui1NZi=Ui
130 129 3adant1 NZ𝔼NU𝔼NZ=Ui1NZi=Ui
131 130 adantr NZ𝔼NU𝔼NZUZ=Ui1NZi=Ui
132 131 adantr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01Z=Ui1NZi=Ui
133 132 orbi2d NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FPtFQ=0Z=UFPtFQ=0i1NZi=Ui
134 126 128 133 3bitr3rd NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FPtFQ=0i1NZi=UiFP=tFQ
135 120 134 bitrid NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1NFPtFQ=0Zi=UiFP=tFQ
136 114 119 135 3bitrd NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUiFP=tFQ
137 136 anassrs NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUiFP=tFQ
138 137 rexbidva NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUit01FP=tFQ
139 33 adantl FP0+∞FQ0+∞t01t
140 1red FP0+∞FQ0+∞t011
141 43 biimpi FQ0+∞FQ0FQ
142 141 ad2antlr FP0+∞FQ0+∞t01FQ0FQ
143 32 simp3bi t01t1
144 143 adantl FP0+∞FQ0+∞t01t1
145 lemul1a t1FQ0FQt1tFQ1FQ
146 139 140 142 144 145 syl31anc FP0+∞FQ0+∞t01tFQ1FQ
147 45 ad2antlr FP0+∞FQ0+∞t01FQ
148 147 mullidd FP0+∞FQ0+∞t011FQ=FQ
149 146 148 breqtrd FP0+∞FQ0+∞t01tFQFQ
150 breq1 FP=tFQFPFQtFQFQ
151 149 150 syl5ibrcom FP0+∞FQ0+∞t01FP=tFQFPFQ
152 151 rexlimdva FP0+∞FQ0+∞t01FP=tFQFPFQ
153 0elunit 001
154 simpl FP=0FQ0+∞FP=0
155 45 mul02d FQ0+∞0FQ=0
156 155 adantl FP=0FQ0+∞0FQ=0
157 154 156 eqtr4d FP=0FQ0+∞FP=0FQ
158 oveq1 t=0tFQ=0FQ
159 158 rspceeqv 001FP=0FQt01FP=tFQ
160 153 157 159 sylancr FP=0FQ0+∞t01FP=tFQ
161 160 adantrl FP=0FP0+∞FQ0+∞t01FP=tFQ
162 161 a1d FP=0FP0+∞FQ0+∞FPFQt01FP=tFQ
163 162 ex FP=0FP0+∞FQ0+∞FPFQt01FP=tFQ
164 simp3 FP0FP0+∞FQ0+∞FPFQFPFQ
165 38 adantr FP0+∞FQ0+∞FP
166 165 3ad2ant2 FP0FP0+∞FQ0+∞FPFQFP
167 37 simprbi FP0+∞0FP
168 167 adantr FP0+∞FQ0+∞0FP
169 168 3ad2ant2 FP0FP0+∞FQ0+∞FPFQ0FP
170 44 adantl FP0+∞FQ0+∞FQ
171 170 3ad2ant2 FP0FP0+∞FQ0+∞FPFQFQ
172 0red FP0FP0+∞FQ0+∞FPFQ0
173 simp1 FP0FP0+∞FQ0+∞FPFQFP0
174 166 169 173 ne0gt0d FP0FP0+∞FQ0+∞FPFQ0<FP
175 172 166 171 174 164 ltletrd FP0FP0+∞FQ0+∞FPFQ0<FQ
176 divelunit FP0FPFQ0<FQFPFQ01FPFQ
177 166 169 171 175 176 syl22anc FP0FP0+∞FQ0+∞FPFQFPFQ01FPFQ
178 164 177 mpbird FP0FP0+∞FQ0+∞FPFQFPFQ01
179 40 3ad2ant2 FP0FP0+∞FQ0+∞FPFQFP
180 46 3ad2ant2 FP0FP0+∞FQ0+∞FPFQFQ
181 175 gt0ne0d FP0FP0+∞FQ0+∞FPFQFQ0
182 179 180 181 divcan1d FP0FP0+∞FQ0+∞FPFQFPFQFQ=FP
183 182 eqcomd FP0FP0+∞FQ0+∞FPFQFP=FPFQFQ
184 oveq1 t=FPFQtFQ=FPFQFQ
185 184 rspceeqv FPFQ01FP=FPFQFQt01FP=tFQ
186 178 183 185 syl2anc FP0FP0+∞FQ0+∞FPFQt01FP=tFQ
187 186 3exp FP0FP0+∞FQ0+∞FPFQt01FP=tFQ
188 163 187 pm2.61ine FP0+∞FQ0+∞FPFQt01FP=tFQ
189 152 188 impbid FP0+∞FQ0+∞t01FP=tFQFPFQ
190 189 adantl NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01FP=tFQFPFQ
191 138 190 bitrd NZ𝔼NU𝔼NZUFP0+∞FQ0+∞t01i1N1FPZi+FPUi=1tZi+t1FQZi+FQUiFPFQ
192 25 191 sylan9bbr NZ𝔼NU𝔼NZUFP0+∞FQ0+∞i1NPi=1FPZi+FPUiQi=1FQZi+FQUit01i1NPi=1tZi+tQiFPFQ
193 192 anasss NZ𝔼NU𝔼NZUFP0+∞FQ0+∞i1NPi=1FPZi+FPUiQi=1FQZi+FQUit01i1NPi=1tZi+tQiFPFQ
194 17 193 sylan2b NZ𝔼NU𝔼NZUFP0+∞i1NPi=1FPZi+FPUiFQ0+∞i1NQi=1FQZi+FQUit01i1NPi=1tZi+tQiFPFQ
195 13 194 syldan NZ𝔼NU𝔼NZUPDQDt01i1NPi=1tZi+tQiFPFQ
196 10 195 bitrd NZ𝔼NU𝔼NZUPDQDPBtwnZQFPFQ