Metamath Proof Explorer


Theorem axcontlem7

Description: Lemma for axcont . Given two points in D , one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypotheses axcontlem7.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
axcontlem7.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
Assertion axcontlem7 N Z 𝔼 N U 𝔼 N Z U P D Q D P Btwn Z Q F P F Q

Proof

Step Hyp Ref Expression
1 axcontlem7.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
2 axcontlem7.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
3 1 ssrab3 D 𝔼 N
4 3 sseli P D P 𝔼 N
5 4 ad2antrl N Z 𝔼 N U 𝔼 N Z U P D Q D P 𝔼 N
6 simpll2 N Z 𝔼 N U 𝔼 N Z U P D Q D Z 𝔼 N
7 3 sseli Q D Q 𝔼 N
8 7 ad2antll N Z 𝔼 N U 𝔼 N Z U P D Q D Q 𝔼 N
9 brbtwn P 𝔼 N Z 𝔼 N Q 𝔼 N P Btwn Z Q t 0 1 i 1 N P i = 1 t Z i + t Q i
10 5 6 8 9 syl3anc N Z 𝔼 N U 𝔼 N Z U P D Q D P Btwn Z Q t 0 1 i 1 N P i = 1 t Z i + t Q i
11 1 2 axcontlem6 N Z 𝔼 N U 𝔼 N Z U P D F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i
12 1 2 axcontlem6 N Z 𝔼 N U 𝔼 N Z U Q D F Q 0 +∞ i 1 N Q i = 1 F Q Z i + F Q U i
13 11 12 anim12dan N Z 𝔼 N U 𝔼 N Z U P D Q D F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i F Q 0 +∞ i 1 N Q i = 1 F Q Z i + F Q U i
14 an4 F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i F Q 0 +∞ i 1 N Q i = 1 F Q Z i + F Q U i F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i i 1 N Q i = 1 F Q Z i + F Q U i
15 r19.26 i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i i 1 N P i = 1 F P Z i + F P U i i 1 N Q i = 1 F Q Z i + F Q U i
16 15 anbi2i F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i i 1 N Q i = 1 F Q Z i + F Q U i
17 14 16 bitr4i F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i F Q 0 +∞ i 1 N Q i = 1 F Q Z i + F Q U i F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i
18 id P i = 1 F P Z i + F P U i P i = 1 F P Z i + F P U i
19 oveq2 Q i = 1 F Q Z i + F Q U i t Q i = t 1 F Q Z i + F Q U i
20 19 oveq2d Q i = 1 F Q Z i + F Q U i 1 t Z i + t Q i = 1 t Z i + t 1 F Q Z i + F Q U i
21 18 20 eqeqan12d P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i P i = 1 t Z i + t Q i 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
22 21 ralimi i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i i 1 N P i = 1 t Z i + t Q i 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
23 ralbi i 1 N P i = 1 t Z i + t Q i 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i i 1 N P i = 1 t Z i + t Q i i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
24 22 23 syl i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i i 1 N P i = 1 t Z i + t Q i i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
25 24 rexbidv i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i t 0 1 i 1 N P i = 1 t Z i + t Q i t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
26 simpll2 N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 Z 𝔼 N
27 fveecn Z 𝔼 N i 1 N Z i
28 26 27 sylan N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N Z i
29 simpll3 N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 U 𝔼 N
30 fveecn U 𝔼 N i 1 N U i
31 29 30 sylan N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N U i
32 elicc01 t 0 1 t 0 t t 1
33 32 simp1bi t 0 1 t
34 33 recnd t 0 1 t
35 34 ad2antll N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 t
36 35 adantr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N t
37 elrege0 F P 0 +∞ F P 0 F P
38 37 simplbi F P 0 +∞ F P
39 38 recnd F P 0 +∞ F P
40 39 adantr F P 0 +∞ F Q 0 +∞ F P
41 40 ad2antrl N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P
42 41 adantr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F P
43 elrege0 F Q 0 +∞ F Q 0 F Q
44 43 simplbi F Q 0 +∞ F Q
45 44 recnd F Q 0 +∞ F Q
46 45 adantl F P 0 +∞ F Q 0 +∞ F Q
47 46 ad2antrl N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F Q
48 47 adantr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F Q
49 ax-1cn 1
50 simpr1 Z i U i t F P F Q t
51 simpr3 Z i U i t F P F Q F Q
52 50 51 mulcld Z i U i t F P F Q t F Q
53 subcl 1 t F Q 1 t F Q
54 49 52 53 sylancr Z i U i t F P F Q 1 t F Q
55 subcl 1 F P 1 F P
56 49 55 mpan F P 1 F P
57 56 3ad2ant2 t F P F Q 1 F P
58 57 adantl Z i U i t F P F Q 1 F P
59 simpll Z i U i t F P F Q Z i
60 54 58 59 subdird Z i U i t F P F Q 1 - t F Q - 1 F P Z i = 1 t F Q Z i 1 F P Z i
61 simpr2 Z i U i t F P F Q F P
62 nnncan1 1 t F Q F P 1 - t F Q - 1 F P = F P t F Q
63 49 52 61 62 mp3an2i Z i U i t F P F Q 1 - t F Q - 1 F P = F P t F Q
64 63 oveq1d Z i U i t F P F Q 1 - t F Q - 1 F P Z i = F P t F Q Z i
65 subdi t 1 F Q t 1 F Q = t 1 t F Q
66 49 65 mp3an2 t F Q t 1 F Q = t 1 t F Q
67 mulid1 t t 1 = t
68 67 adantr t F Q t 1 = t
69 68 oveq1d t F Q t 1 t F Q = t t F Q
70 66 69 eqtrd t F Q t 1 F Q = t t F Q
71 50 51 70 syl2anc Z i U i t F P F Q t 1 F Q = t t F Q
72 71 oveq2d Z i U i t F P F Q 1 - t + t 1 F Q = 1 t + t - t F Q
73 npncan 1 t t F Q 1 t + t - t F Q = 1 t F Q
74 49 50 52 73 mp3an2i Z i U i t F P F Q 1 t + t - t F Q = 1 t F Q
75 72 74 eqtr2d Z i U i t F P F Q 1 t F Q = 1 - t + t 1 F Q
76 75 oveq1d Z i U i t F P F Q 1 t F Q Z i = 1 - t + t 1 F Q Z i
77 subcl 1 t 1 t
78 49 77 mpan t 1 t
79 78 3ad2ant1 t F P F Q 1 t
80 79 adantl Z i U i t F P F Q 1 t
81 subcl 1 F Q 1 F Q
82 49 81 mpan F Q 1 F Q
83 82 3ad2ant3 t F P F Q 1 F Q
84 83 adantl Z i U i t F P F Q 1 F Q
85 50 84 mulcld Z i U i t F P F Q t 1 F Q
86 80 85 59 adddird Z i U i t F P F Q 1 - t + t 1 F Q Z i = 1 t Z i + t 1 F Q Z i
87 50 84 59 mulassd Z i U i t F P F Q t 1 F Q Z i = t 1 F Q Z i
88 87 oveq2d Z i U i t F P F Q 1 t Z i + t 1 F Q Z i = 1 t Z i + t 1 F Q Z i
89 76 86 88 3eqtrd Z i U i t F P F Q 1 t F Q Z i = 1 t Z i + t 1 F Q Z i
90 89 oveq1d Z i U i t F P F Q 1 t F Q Z i 1 F P Z i = 1 t Z i + t 1 F Q Z i - 1 F P Z i
91 60 64 90 3eqtr3d Z i U i t F P F Q F P t F Q Z i = 1 t Z i + t 1 F Q Z i - 1 F P Z i
92 simplr Z i U i t F P F Q U i
93 61 52 92 subdird Z i U i t F P F Q F P t F Q U i = F P U i t F Q U i
94 50 51 92 mulassd Z i U i t F P F Q t F Q U i = t F Q U i
95 94 oveq2d Z i U i t F P F Q F P U i t F Q U i = F P U i t F Q U i
96 93 95 eqtrd Z i U i t F P F Q F P t F Q U i = F P U i t F Q U i
97 91 96 eqeq12d Z i U i t F P F Q F P t F Q Z i = F P t F Q U i 1 t Z i + t 1 F Q Z i - 1 F P Z i = F P U i t F Q U i
98 58 59 mulcld Z i U i t F P F Q 1 F P Z i
99 61 92 mulcld Z i U i t F P F Q F P U i
100 80 59 mulcld Z i U i t F P F Q 1 t Z i
101 84 59 mulcld Z i U i t F P F Q 1 F Q Z i
102 50 101 mulcld Z i U i t F P F Q t 1 F Q Z i
103 100 102 addcld Z i U i t F P F Q 1 t Z i + t 1 F Q Z i
104 51 92 mulcld Z i U i t F P F Q F Q U i
105 50 104 mulcld Z i U i t F P F Q t F Q U i
106 98 99 103 105 addsubeq4d Z i U i t F P F Q 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + t F Q U i 1 t Z i + t 1 F Q Z i - 1 F P Z i = F P U i t F Q U i
107 100 102 105 addassd Z i U i t F P F Q 1 t Z i + t 1 F Q Z i + t F Q U i = 1 t Z i + t 1 F Q Z i + t F Q U i
108 50 101 104 adddid Z i U i t F P F Q t 1 F Q Z i + F Q U i = t 1 F Q Z i + t F Q U i
109 108 oveq2d Z i U i t F P F Q 1 t Z i + t 1 F Q Z i + F Q U i = 1 t Z i + t 1 F Q Z i + t F Q U i
110 107 109 eqtr4d Z i U i t F P F Q 1 t Z i + t 1 F Q Z i + t F Q U i = 1 t Z i + t 1 F Q Z i + F Q U i
111 110 eqeq2d Z i U i t F P F Q 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + t F Q U i 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i
112 97 106 111 3bitr2rd Z i U i t F P F Q 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i F P t F Q Z i = F P t F Q U i
113 28 31 36 42 48 112 syl23anc N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i F P t F Q Z i = F P t F Q U i
114 113 ralbidva N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i i 1 N F P t F Q Z i = F P t F Q U i
115 36 48 mulcld N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N t F Q
116 42 115 subcld N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F P t F Q
117 mulcan1g F P t F Q Z i U i F P t F Q Z i = F P t F Q U i F P t F Q = 0 Z i = U i
118 116 28 31 117 syl3anc N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F P t F Q Z i = F P t F Q U i F P t F Q = 0 Z i = U i
119 118 ralbidva N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F P t F Q Z i = F P t F Q U i i 1 N F P t F Q = 0 Z i = U i
120 r19.32v i 1 N F P t F Q = 0 Z i = U i F P t F Q = 0 i 1 N Z i = U i
121 simplr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 Z U
122 121 neneqd N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 ¬ Z = U
123 biorf ¬ Z = U F P t F Q = 0 Z = U F P t F Q = 0
124 orcom Z = U F P t F Q = 0 F P t F Q = 0 Z = U
125 123 124 bitrdi ¬ Z = U F P t F Q = 0 F P t F Q = 0 Z = U
126 122 125 syl N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P t F Q = 0 F P t F Q = 0 Z = U
127 35 47 mulcld N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 t F Q
128 41 127 subeq0ad N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P t F Q = 0 F P = t F Q
129 eqeefv Z 𝔼 N U 𝔼 N Z = U i 1 N Z i = U i
130 129 3adant1 N Z 𝔼 N U 𝔼 N Z = U i 1 N Z i = U i
131 130 adantr N Z 𝔼 N U 𝔼 N Z U Z = U i 1 N Z i = U i
132 131 adantr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 Z = U i 1 N Z i = U i
133 132 orbi2d N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P t F Q = 0 Z = U F P t F Q = 0 i 1 N Z i = U i
134 126 128 133 3bitr3rd N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P t F Q = 0 i 1 N Z i = U i F P = t F Q
135 120 134 syl5bb N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N F P t F Q = 0 Z i = U i F P = t F Q
136 114 119 135 3bitrd N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i F P = t F Q
137 136 anassrs N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i F P = t F Q
138 137 rexbidva N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i t 0 1 F P = t F Q
139 33 adantl F P 0 +∞ F Q 0 +∞ t 0 1 t
140 1red F P 0 +∞ F Q 0 +∞ t 0 1 1
141 43 biimpi F Q 0 +∞ F Q 0 F Q
142 141 ad2antlr F P 0 +∞ F Q 0 +∞ t 0 1 F Q 0 F Q
143 32 simp3bi t 0 1 t 1
144 143 adantl F P 0 +∞ F Q 0 +∞ t 0 1 t 1
145 lemul1a t 1 F Q 0 F Q t 1 t F Q 1 F Q
146 139 140 142 144 145 syl31anc F P 0 +∞ F Q 0 +∞ t 0 1 t F Q 1 F Q
147 45 ad2antlr F P 0 +∞ F Q 0 +∞ t 0 1 F Q
148 147 mulid2d F P 0 +∞ F Q 0 +∞ t 0 1 1 F Q = F Q
149 146 148 breqtrd F P 0 +∞ F Q 0 +∞ t 0 1 t F Q F Q
150 breq1 F P = t F Q F P F Q t F Q F Q
151 149 150 syl5ibrcom F P 0 +∞ F Q 0 +∞ t 0 1 F P = t F Q F P F Q
152 151 rexlimdva F P 0 +∞ F Q 0 +∞ t 0 1 F P = t F Q F P F Q
153 0elunit 0 0 1
154 simpl F P = 0 F Q 0 +∞ F P = 0
155 45 mul02d F Q 0 +∞ 0 F Q = 0
156 155 adantl F P = 0 F Q 0 +∞ 0 F Q = 0
157 154 156 eqtr4d F P = 0 F Q 0 +∞ F P = 0 F Q
158 oveq1 t = 0 t F Q = 0 F Q
159 158 rspceeqv 0 0 1 F P = 0 F Q t 0 1 F P = t F Q
160 153 157 159 sylancr F P = 0 F Q 0 +∞ t 0 1 F P = t F Q
161 160 adantrl F P = 0 F P 0 +∞ F Q 0 +∞ t 0 1 F P = t F Q
162 161 a1d F P = 0 F P 0 +∞ F Q 0 +∞ F P F Q t 0 1 F P = t F Q
163 162 ex F P = 0 F P 0 +∞ F Q 0 +∞ F P F Q t 0 1 F P = t F Q
164 simp3 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P F Q
165 38 adantr F P 0 +∞ F Q 0 +∞ F P
166 165 3ad2ant2 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P
167 37 simprbi F P 0 +∞ 0 F P
168 167 adantr F P 0 +∞ F Q 0 +∞ 0 F P
169 168 3ad2ant2 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q 0 F P
170 44 adantl F P 0 +∞ F Q 0 +∞ F Q
171 170 3ad2ant2 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F Q
172 0red F P 0 F P 0 +∞ F Q 0 +∞ F P F Q 0
173 simp1 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P 0
174 166 169 173 ne0gt0d F P 0 F P 0 +∞ F Q 0 +∞ F P F Q 0 < F P
175 172 166 171 174 164 ltletrd F P 0 F P 0 +∞ F Q 0 +∞ F P F Q 0 < F Q
176 divelunit F P 0 F P F Q 0 < F Q F P F Q 0 1 F P F Q
177 166 169 171 175 176 syl22anc F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P F Q 0 1 F P F Q
178 164 177 mpbird F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P F Q 0 1
179 40 3ad2ant2 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P
180 46 3ad2ant2 F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F Q
181 175 gt0ne0d F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F Q 0
182 179 180 181 divcan1d F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P F Q F Q = F P
183 182 eqcomd F P 0 F P 0 +∞ F Q 0 +∞ F P F Q F P = F P F Q F Q
184 oveq1 t = F P F Q t F Q = F P F Q F Q
185 184 rspceeqv F P F Q 0 1 F P = F P F Q F Q t 0 1 F P = t F Q
186 178 183 185 syl2anc F P 0 F P 0 +∞ F Q 0 +∞ F P F Q t 0 1 F P = t F Q
187 186 3exp F P 0 F P 0 +∞ F Q 0 +∞ F P F Q t 0 1 F P = t F Q
188 163 187 pm2.61ine F P 0 +∞ F Q 0 +∞ F P F Q t 0 1 F P = t F Q
189 152 188 impbid F P 0 +∞ F Q 0 +∞ t 0 1 F P = t F Q F P F Q
190 189 adantl N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 F P = t F Q F P F Q
191 138 190 bitrd N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ t 0 1 i 1 N 1 F P Z i + F P U i = 1 t Z i + t 1 F Q Z i + F Q U i F P F Q
192 25 191 sylan9bbr N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i t 0 1 i 1 N P i = 1 t Z i + t Q i F P F Q
193 192 anasss N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ F Q 0 +∞ i 1 N P i = 1 F P Z i + F P U i Q i = 1 F Q Z i + F Q U i t 0 1 i 1 N P i = 1 t Z i + t Q i F P F Q
194 17 193 sylan2b N Z 𝔼 N U 𝔼 N Z U F P 0 +∞ i 1 N P i = 1 F P Z i + F P U i F Q 0 +∞ i 1 N Q i = 1 F Q Z i + F Q U i t 0 1 i 1 N P i = 1 t Z i + t Q i F P F Q
195 13 194 syldan N Z 𝔼 N U 𝔼 N Z U P D Q D t 0 1 i 1 N P i = 1 t Z i + t Q i F P F Q
196 10 195 bitrd N Z 𝔼 N U 𝔼 N Z U P D Q D P Btwn Z Q F P F Q