| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem7.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | axcontlem7.2 |  |-  F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 3 | 1 | ssrab3 |  |-  D C_ ( EE ` N ) | 
						
							| 4 | 3 | sseli |  |-  ( P e. D -> P e. ( EE ` N ) ) | 
						
							| 5 | 4 | ad2antrl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> P e. ( EE ` N ) ) | 
						
							| 6 |  | simpll2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> Z e. ( EE ` N ) ) | 
						
							| 7 | 3 | sseli |  |-  ( Q e. D -> Q e. ( EE ` N ) ) | 
						
							| 8 | 7 | ad2antll |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> Q e. ( EE ` N ) ) | 
						
							| 9 |  | brbtwn |  |-  ( ( P e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> ( P Btwn <. Z , Q >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( P Btwn <. Z , Q >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) ) ) | 
						
							| 11 | 1 2 | axcontlem6 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) | 
						
							| 12 | 1 2 | axcontlem6 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ Q e. D ) -> ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 13 | 11 12 | anim12dan |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 14 |  | an4 |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 15 |  | r19.26 |  |-  ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 16 | 15 | anbi2i |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 17 | 14 16 | bitr4i |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 18 |  | id |  |-  ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) -> ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) -> ( t x. ( Q ` i ) ) = ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 21 | 18 20 | eqeqan12d |  |-  ( ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 22 | 21 | ralimi |  |-  ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 23 |  | ralbi |  |-  ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 26 |  | simpll2 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> Z e. ( EE ` N ) ) | 
						
							| 27 |  | fveecn |  |-  ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) | 
						
							| 29 |  | simpll3 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> U e. ( EE ` N ) ) | 
						
							| 30 |  | fveecn |  |-  ( ( U e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) | 
						
							| 31 | 29 30 | sylan |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) | 
						
							| 32 |  | elicc01 |  |-  ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) | 
						
							| 33 | 32 | simp1bi |  |-  ( t e. ( 0 [,] 1 ) -> t e. RR ) | 
						
							| 34 | 33 | recnd |  |-  ( t e. ( 0 [,] 1 ) -> t e. CC ) | 
						
							| 35 | 34 | ad2antll |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> t e. CC ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> t e. CC ) | 
						
							| 37 |  | elrege0 |  |-  ( ( F ` P ) e. ( 0 [,) +oo ) <-> ( ( F ` P ) e. RR /\ 0 <_ ( F ` P ) ) ) | 
						
							| 38 | 37 | simplbi |  |-  ( ( F ` P ) e. ( 0 [,) +oo ) -> ( F ` P ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( ( F ` P ) e. ( 0 [,) +oo ) -> ( F ` P ) e. CC ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) e. CC ) | 
						
							| 41 | 40 | ad2antrl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` P ) e. CC ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` P ) e. CC ) | 
						
							| 43 |  | elrege0 |  |-  ( ( F ` Q ) e. ( 0 [,) +oo ) <-> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) | 
						
							| 44 | 43 | simplbi |  |-  ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( F ` Q ) e. RR ) | 
						
							| 45 | 44 | recnd |  |-  ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( F ` Q ) e. CC ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` Q ) e. CC ) | 
						
							| 47 | 46 | ad2antrl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` Q ) e. CC ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` Q ) e. CC ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | simpr1 |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> t e. CC ) | 
						
							| 51 |  | simpr3 |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( F ` Q ) e. CC ) | 
						
							| 52 | 50 51 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( F ` Q ) ) e. CC ) | 
						
							| 53 |  | subcl |  |-  ( ( 1 e. CC /\ ( t x. ( F ` Q ) ) e. CC ) -> ( 1 - ( t x. ( F ` Q ) ) ) e. CC ) | 
						
							| 54 | 49 52 53 | sylancr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( t x. ( F ` Q ) ) ) e. CC ) | 
						
							| 55 |  | subcl |  |-  ( ( 1 e. CC /\ ( F ` P ) e. CC ) -> ( 1 - ( F ` P ) ) e. CC ) | 
						
							| 56 | 49 55 | mpan |  |-  ( ( F ` P ) e. CC -> ( 1 - ( F ` P ) ) e. CC ) | 
						
							| 57 | 56 | 3ad2ant2 |  |-  ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` P ) ) e. CC ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( F ` P ) ) e. CC ) | 
						
							| 59 |  | simpll |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( Z ` i ) e. CC ) | 
						
							| 60 | 54 58 59 | subdird |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) | 
						
							| 61 |  | simpr2 |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( F ` P ) e. CC ) | 
						
							| 62 |  | nnncan1 |  |-  ( ( 1 e. CC /\ ( t x. ( F ` Q ) ) e. CC /\ ( F ` P ) e. CC ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) = ( ( F ` P ) - ( t x. ( F ` Q ) ) ) ) | 
						
							| 63 | 49 52 61 62 | mp3an2i |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) = ( ( F ` P ) - ( t x. ( F ` Q ) ) ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) ) | 
						
							| 65 |  | subdi |  |-  ( ( t e. CC /\ 1 e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) ) | 
						
							| 66 | 49 65 | mp3an2 |  |-  ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) ) | 
						
							| 67 |  | mulrid |  |-  ( t e. CC -> ( t x. 1 ) = t ) | 
						
							| 68 | 67 | adantr |  |-  ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. 1 ) = t ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) | 
						
							| 70 | 66 69 | eqtrd |  |-  ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) | 
						
							| 71 | 50 51 70 | syl2anc |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) | 
						
							| 72 | 71 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) = ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) ) | 
						
							| 73 |  | npncan |  |-  ( ( 1 e. CC /\ t e. CC /\ ( t x. ( F ` Q ) ) e. CC ) -> ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) = ( 1 - ( t x. ( F ` Q ) ) ) ) | 
						
							| 74 | 49 50 52 73 | mp3an2i |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) = ( 1 - ( t x. ( F ` Q ) ) ) ) | 
						
							| 75 | 72 74 | eqtr2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( t x. ( F ` Q ) ) ) = ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) ) | 
						
							| 76 | 75 | oveq1d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) x. ( Z ` i ) ) ) | 
						
							| 77 |  | subcl |  |-  ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) | 
						
							| 78 | 49 77 | mpan |  |-  ( t e. CC -> ( 1 - t ) e. CC ) | 
						
							| 79 | 78 | 3ad2ant1 |  |-  ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - t ) e. CC ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - t ) e. CC ) | 
						
							| 81 |  | subcl |  |-  ( ( 1 e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` Q ) ) e. CC ) | 
						
							| 82 | 49 81 | mpan |  |-  ( ( F ` Q ) e. CC -> ( 1 - ( F ` Q ) ) e. CC ) | 
						
							| 83 | 82 | 3ad2ant3 |  |-  ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` Q ) ) e. CC ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( F ` Q ) ) e. CC ) | 
						
							| 85 | 50 84 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( 1 - ( F ` Q ) ) ) e. CC ) | 
						
							| 86 | 80 85 59 | adddird |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) ) ) | 
						
							| 87 | 50 84 59 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) = ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) ) | 
						
							| 89 | 76 86 88 | 3eqtrd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) | 
						
							| 91 | 60 64 90 | 3eqtr3d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) | 
						
							| 92 |  | simplr |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( U ` i ) e. CC ) | 
						
							| 93 | 61 52 92 | subdird |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) ) ) | 
						
							| 94 | 50 51 92 | mulassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) = ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) x. ( U ` i ) ) - ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 96 | 93 95 | eqtrd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 97 | 91 96 | eqeq12d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 98 | 58 59 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 99 | 61 92 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( F ` P ) x. ( U ` i ) ) e. CC ) | 
						
							| 100 | 80 59 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) | 
						
							| 101 | 84 59 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) e. CC ) | 
						
							| 102 | 50 101 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) e. CC ) | 
						
							| 103 | 100 102 | addcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) e. CC ) | 
						
							| 104 | 51 92 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( F ` Q ) x. ( U ` i ) ) e. CC ) | 
						
							| 105 | 50 104 | mulcld |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) e. CC ) | 
						
							| 106 | 98 99 103 105 | addsubeq4d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 107 | 100 102 105 | addassd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 108 | 50 101 104 | adddid |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 110 | 107 109 | eqtr4d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) | 
						
							| 111 | 110 | eqeq2d |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) | 
						
							| 112 | 97 106 111 | 3bitr2rd |  |-  ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) | 
						
							| 113 | 28 31 36 42 48 112 | syl23anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) | 
						
							| 114 | 113 | ralbidva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) | 
						
							| 115 | 36 48 | mulcld |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( t x. ( F ` Q ) ) e. CC ) | 
						
							| 116 | 42 115 | subcld |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( F ` P ) - ( t x. ( F ` Q ) ) ) e. CC ) | 
						
							| 117 |  | mulcan1g |  |-  ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) e. CC /\ ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 118 | 116 28 31 117 | syl3anc |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 119 | 118 | ralbidva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 120 |  | r19.32v |  |-  ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 121 |  | simplr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> Z =/= U ) | 
						
							| 122 | 121 | neneqd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> -. Z = U ) | 
						
							| 123 |  | biorf |  |-  ( -. Z = U -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( Z = U \/ ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 ) ) ) | 
						
							| 124 |  | orcom |  |-  ( ( Z = U \/ ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) | 
						
							| 125 | 123 124 | bitrdi |  |-  ( -. Z = U -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) ) | 
						
							| 126 | 122 125 | syl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) ) | 
						
							| 127 | 35 47 | mulcld |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( t x. ( F ` Q ) ) e. CC ) | 
						
							| 128 | 41 127 | subeq0ad |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 129 |  | eqeefv |  |-  ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 130 | 129 | 3adant1 |  |-  ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) | 
						
							| 133 | 132 | orbi2d |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) ) | 
						
							| 134 | 126 128 133 | 3bitr3rd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 135 | 120 134 | bitrid |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 136 | 114 119 135 | 3bitrd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 137 | 136 | anassrs |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) /\ t e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 138 | 137 | rexbidva |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 139 | 33 | adantl |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. RR ) | 
						
							| 140 |  | 1red |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> 1 e. RR ) | 
						
							| 141 | 43 | biimpi |  |-  ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) | 
						
							| 142 | 141 | ad2antlr |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) | 
						
							| 143 | 32 | simp3bi |  |-  ( t e. ( 0 [,] 1 ) -> t <_ 1 ) | 
						
							| 144 | 143 | adantl |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> t <_ 1 ) | 
						
							| 145 |  | lemul1a |  |-  ( ( ( t e. RR /\ 1 e. RR /\ ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) /\ t <_ 1 ) -> ( t x. ( F ` Q ) ) <_ ( 1 x. ( F ` Q ) ) ) | 
						
							| 146 | 139 140 142 144 145 | syl31anc |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( t x. ( F ` Q ) ) <_ ( 1 x. ( F ` Q ) ) ) | 
						
							| 147 | 45 | ad2antlr |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( F ` Q ) e. CC ) | 
						
							| 148 | 147 | mullidd |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 x. ( F ` Q ) ) = ( F ` Q ) ) | 
						
							| 149 | 146 148 | breqtrd |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( t x. ( F ` Q ) ) <_ ( F ` Q ) ) | 
						
							| 150 |  | breq1 |  |-  ( ( F ` P ) = ( t x. ( F ` Q ) ) -> ( ( F ` P ) <_ ( F ` Q ) <-> ( t x. ( F ` Q ) ) <_ ( F ` Q ) ) ) | 
						
							| 151 | 149 150 | syl5ibrcom |  |-  ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` P ) = ( t x. ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 152 | 151 | rexlimdva |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 153 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 154 |  | simpl |  |-  ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) = 0 ) | 
						
							| 155 | 45 | mul02d |  |-  ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( 0 x. ( F ` Q ) ) = 0 ) | 
						
							| 156 | 155 | adantl |  |-  ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( 0 x. ( F ` Q ) ) = 0 ) | 
						
							| 157 | 154 156 | eqtr4d |  |-  ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) = ( 0 x. ( F ` Q ) ) ) | 
						
							| 158 |  | oveq1 |  |-  ( t = 0 -> ( t x. ( F ` Q ) ) = ( 0 x. ( F ` Q ) ) ) | 
						
							| 159 | 158 | rspceeqv |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ ( F ` P ) = ( 0 x. ( F ` Q ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) | 
						
							| 160 | 153 157 159 | sylancr |  |-  ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) | 
						
							| 161 | 160 | adantrl |  |-  ( ( ( F ` P ) = 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) | 
						
							| 162 | 161 | a1d |  |-  ( ( ( F ` P ) = 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 163 | 162 | ex |  |-  ( ( F ` P ) = 0 -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) ) | 
						
							| 164 |  | simp3 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) | 
						
							| 165 | 38 | adantr |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) e. RR ) | 
						
							| 166 | 165 | 3ad2ant2 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) e. RR ) | 
						
							| 167 | 37 | simprbi |  |-  ( ( F ` P ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` P ) ) | 
						
							| 168 | 167 | adantr |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` P ) ) | 
						
							| 169 | 168 | 3ad2ant2 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 <_ ( F ` P ) ) | 
						
							| 170 | 44 | adantl |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` Q ) e. RR ) | 
						
							| 171 | 170 | 3ad2ant2 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) e. RR ) | 
						
							| 172 |  | 0red |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 e. RR ) | 
						
							| 173 |  | simp1 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) =/= 0 ) | 
						
							| 174 | 166 169 173 | ne0gt0d |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 < ( F ` P ) ) | 
						
							| 175 | 172 166 171 174 164 | ltletrd |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 < ( F ` Q ) ) | 
						
							| 176 |  | divelunit |  |-  ( ( ( ( F ` P ) e. RR /\ 0 <_ ( F ` P ) ) /\ ( ( F ` Q ) e. RR /\ 0 < ( F ` Q ) ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 177 | 166 169 171 175 176 | syl22anc |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 178 | 164 177 | mpbird |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) ) | 
						
							| 179 | 40 | 3ad2ant2 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) e. CC ) | 
						
							| 180 | 46 | 3ad2ant2 |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) e. CC ) | 
						
							| 181 | 175 | gt0ne0d |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) =/= 0 ) | 
						
							| 182 | 179 180 181 | divcan1d |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) = ( F ` P ) ) | 
						
							| 183 | 182 | eqcomd |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) | 
						
							| 184 |  | oveq1 |  |-  ( t = ( ( F ` P ) / ( F ` Q ) ) -> ( t x. ( F ` Q ) ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) | 
						
							| 185 | 184 | rspceeqv |  |-  ( ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) /\ ( F ` P ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) | 
						
							| 186 | 178 183 185 | syl2anc |  |-  ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) | 
						
							| 187 | 186 | 3exp |  |-  ( ( F ` P ) =/= 0 -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) ) | 
						
							| 188 | 163 187 | pm2.61ine |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) | 
						
							| 189 | 152 188 | impbid |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 190 | 189 | adantl |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 191 | 138 190 | bitrd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 192 | 25 191 | sylan9bbr |  |-  ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 193 | 192 | anasss |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 194 | 17 193 | sylan2b |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 195 | 13 194 | syldan |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) | 
						
							| 196 | 10 195 | bitrd |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( P Btwn <. Z , Q >. <-> ( F ` P ) <_ ( F ` Q ) ) ) |