| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem7.1 | ⊢ 𝐷  =  { 𝑝  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑈  Btwn  〈 𝑍 ,  𝑝 〉  ∨  𝑝  Btwn  〈 𝑍 ,  𝑈 〉 ) } | 
						
							| 2 |  | axcontlem7.2 | ⊢ 𝐹  =  { 〈 𝑥 ,  𝑡 〉  ∣  ( 𝑥  ∈  𝐷  ∧  ( 𝑡  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) } | 
						
							| 3 | 1 | ssrab3 | ⊢ 𝐷  ⊆  ( 𝔼 ‘ 𝑁 ) | 
						
							| 4 | 3 | sseli | ⊢ ( 𝑃  ∈  𝐷  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 | 4 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | simpll2 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 7 | 3 | sseli | ⊢ ( 𝑄  ∈  𝐷  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 | 7 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 9 |  | brbtwn | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑃  Btwn  〈 𝑍 ,  𝑄 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) ) ) ) | 
						
							| 10 | 5 6 8 9 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  ( 𝑃  Btwn  〈 𝑍 ,  𝑄 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) ) ) ) | 
						
							| 11 | 1 2 | axcontlem6 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑃  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 12 | 1 2 | axcontlem6 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑄  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 13 | 11 12 | anim12dan | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 14 |  | an4 | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 15 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 16 | 15 | anbi2i | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 17 | 14 16 | bitr4i | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 18 |  | id | ⊢ ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  →  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 21 | 18 20 | eqeqan12d | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 22 | 21 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 23 |  | ralbi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 26 |  | simpll2 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 27 |  | fveecn | ⊢ ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 29 |  | simpll3 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 30 |  | fveecn | ⊢ ( ( 𝑈  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 31 | 29 30 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 32 |  | elicc01 | ⊢ ( 𝑡  ∈  ( 0 [,] 1 )  ↔  ( 𝑡  ∈  ℝ  ∧  0  ≤  𝑡  ∧  𝑡  ≤  1 ) ) | 
						
							| 33 | 32 | simp1bi | ⊢ ( 𝑡  ∈  ( 0 [,] 1 )  →  𝑡  ∈  ℝ ) | 
						
							| 34 | 33 | recnd | ⊢ ( 𝑡  ∈  ( 0 [,] 1 )  →  𝑡  ∈  ℂ ) | 
						
							| 35 | 34 | ad2antll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  𝑡  ∈  ℂ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑡  ∈  ℂ ) | 
						
							| 37 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 38 | 37 | simplbi | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 41 | 40 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 43 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 44 | 43 | simplbi | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 45 | 44 | recnd | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 47 | 46 | ad2antrl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 49 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 50 |  | simpr1 | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  𝑡  ∈  ℂ ) | 
						
							| 51 |  | simpr3 | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 52 | 50 51 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 53 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ )  →  ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ∈  ℂ ) | 
						
							| 54 | 49 52 53 | sylancr | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ∈  ℂ ) | 
						
							| 55 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 56 | 49 55 | mpan | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 59 |  | simpll | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 60 | 54 58 59 | subdird | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  −  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 61 |  | simpr2 | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 62 |  | nnncan1 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ )  →  ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  −  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 63 | 49 52 61 62 | mp3an2i | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  −  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  −  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 65 |  | subdi | ⊢ ( ( 𝑡  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( 𝑡  ·  1 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 66 | 49 65 | mp3an2 | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( 𝑡  ·  1 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 67 |  | mulrid | ⊢ ( 𝑡  ∈  ℂ  →  ( 𝑡  ·  1 )  =  𝑡 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 𝑡  ·  1 )  =  𝑡 ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( ( 𝑡  ·  1 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 70 | 66 69 | eqtrd | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 71 | 50 51 70 | syl2anc | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  𝑡 )  +  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) )  =  ( ( 1  −  𝑡 )  +  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) ) | 
						
							| 73 |  | npncan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑡  ∈  ℂ  ∧  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ )  →  ( ( 1  −  𝑡 )  +  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) )  =  ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 74 | 49 50 52 73 | mp3an2i | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  𝑡 )  +  ( 𝑡  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) )  =  ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 75 | 72 74 | eqtr2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( 1  −  𝑡 )  +  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 1  −  𝑡 )  +  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 77 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑡  ∈  ℂ )  →  ( 1  −  𝑡 )  ∈  ℂ ) | 
						
							| 78 | 49 77 | mpan | ⊢ ( 𝑡  ∈  ℂ  →  ( 1  −  𝑡 )  ∈  ℂ ) | 
						
							| 79 | 78 | 3ad2ant1 | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 1  −  𝑡 )  ∈  ℂ ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 1  −  𝑡 )  ∈  ℂ ) | 
						
							| 81 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 82 | 49 81 | mpan | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 83 | 82 | 3ad2ant3 | ⊢ ( ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 85 | 50 84 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  ∈  ℂ ) | 
						
							| 86 | 80 85 59 | adddird | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  𝑡 )  +  ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 87 | 50 84 59 | mulassd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝑡  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) ) | 
						
							| 89 | 76 86 88 | 3eqtrd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) ) | 
						
							| 90 | 89 | oveq1d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  =  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 91 | 60 64 90 | 3eqtr3d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 92 |  | simplr | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 93 | 61 52 92 | subdird | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 94 | 50 51 92 | mulassd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 96 | 93 95 | eqtrd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 97 | 91 96 | eqeq12d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  ↔  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 98 | 58 59 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 99 | 61 92 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 100 | 80 59 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 101 | 84 59 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 102 | 50 101 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 103 | 100 102 | addcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  ∈  ℂ ) | 
						
							| 104 | 51 92 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 105 | 50 104 | mulcld | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 106 | 98 99 103 105 | addsubeq4d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ↔  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  −  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  −  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 107 | 100 102 105 | addassd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 108 | 50 101 104 | adddid | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 110 | 107 109 | eqtr4d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 111 | 110 | eqeq2d | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 112 | 97 106 111 | 3bitr2rd | ⊢ ( ( ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  ∧  ( 𝑡  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 113 | 28 31 36 42 48 112 | syl23anc | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 114 | 113 | ralbidva | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 115 | 36 48 | mulcld | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 116 | 42 115 | subcld | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ∈  ℂ ) | 
						
							| 117 |  | mulcan1g | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ∈  ℂ  ∧  ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 118 | 116 28 31 117 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 119 | 118 | ralbidva | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 120 |  | r19.32v | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 121 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  𝑍  ≠  𝑈 ) | 
						
							| 122 | 121 | neneqd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ¬  𝑍  =  𝑈 ) | 
						
							| 123 |  | biorf | ⊢ ( ¬  𝑍  =  𝑈  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ↔  ( 𝑍  =  𝑈  ∨  ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0 ) ) ) | 
						
							| 124 |  | orcom | ⊢ ( ( 𝑍  =  𝑈  ∨  ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0 )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  𝑍  =  𝑈 ) ) | 
						
							| 125 | 123 124 | bitrdi | ⊢ ( ¬  𝑍  =  𝑈  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  𝑍  =  𝑈 ) ) ) | 
						
							| 126 | 122 125 | syl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  𝑍  =  𝑈 ) ) ) | 
						
							| 127 | 35 47 | mulcld | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 128 | 41 127 | subeq0ad | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 129 |  | eqeefv | ⊢ ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑍  =  𝑈  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 130 | 129 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑍  =  𝑈  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  ( 𝑍  =  𝑈  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑍  =  𝑈  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 133 | 132 | orbi2d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  𝑍  =  𝑈 )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 134 | 126 128 133 | 3bitr3rd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 135 | 120 134 | bitrid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑃 )  −  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  0  ∨  ( 𝑍 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 136 | 114 119 135 | 3bitrd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 137 | 136 | anassrs | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 138 | 137 | rexbidva | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 139 | 33 | adantl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  𝑡  ∈  ℝ ) | 
						
							| 140 |  | 1red | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  1  ∈  ℝ ) | 
						
							| 141 | 43 | biimpi | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 142 | 141 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 143 | 32 | simp3bi | ⊢ ( 𝑡  ∈  ( 0 [,] 1 )  →  𝑡  ≤  1 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  𝑡  ≤  1 ) | 
						
							| 145 |  | lemul1a | ⊢ ( ( ( 𝑡  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑄 ) ) )  ∧  𝑡  ≤  1 )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ≤  ( 1  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 146 | 139 140 142 144 145 | syl31anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ≤  ( 1  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 147 | 45 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 148 | 147 | mullidd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( 1  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 149 | 146 148 | breqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ≤  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 150 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ↔  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 151 | 149 150 | syl5ibrcom | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  𝑡  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 152 | 151 | rexlimdva | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 153 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 154 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑃 )  =  0 ) | 
						
							| 155 | 45 | mul02d | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( 0  ·  ( 𝐹 ‘ 𝑄 ) )  =  0 ) | 
						
							| 156 | 155 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 0  ·  ( 𝐹 ‘ 𝑄 ) )  =  0 ) | 
						
							| 157 | 154 156 | eqtr4d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 158 |  | oveq1 | ⊢ ( 𝑡  =  0  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( 0  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 159 | 158 | rspceeqv | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 0  ·  ( 𝐹 ‘ 𝑄 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 160 | 153 157 159 | sylancr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 161 | 160 | adantrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 162 | 161 | a1d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 163 | 162 | ex | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  0  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) ) | 
						
							| 164 |  | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 165 | 38 | adantr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 166 | 165 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 167 | 37 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  →  0  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  0  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 169 | 168 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  0  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 170 | 44 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 171 | 170 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 172 |  | 0red | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  0  ∈  ℝ ) | 
						
							| 173 |  | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  0 ) | 
						
							| 174 | 166 169 173 | ne0gt0d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  0  <  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 175 | 172 166 171 174 164 | ltletrd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  0  <  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 176 |  | divelunit | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  <  ( 𝐹 ‘ 𝑄 ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ∈  ( 0 [,] 1 )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 177 | 166 169 171 175 176 | syl22anc | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ∈  ( 0 [,] 1 )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 178 | 164 177 | mpbird | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 179 | 40 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 180 | 46 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 181 | 175 | gt0ne0d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑄 )  ≠  0 ) | 
						
							| 182 | 179 180 181 | divcan1d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 183 | 182 | eqcomd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 184 |  | oveq1 | ⊢ ( 𝑡  =  ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 185 | 184 | rspceeqv | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ∈  ( 0 [,] 1 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( ( ( 𝐹 ‘ 𝑃 )  /  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 186 | 178 183 185 | syl2anc | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  0  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 187 | 186 | 3exp | ⊢ ( ( 𝐹 ‘ 𝑃 )  ≠  0  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) ) | 
						
							| 188 | 163 187 | pm2.61ine | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 189 | 152 188 | impbid | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 190 | 189 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ( 𝐹 ‘ 𝑃 )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑄 ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 191 | 138 190 | bitrd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 192 | 25 191 | sylan9bbr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 193 | 192 | anasss | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 194 | 17 193 | sylan2b | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 195 | 13 194 | syldan | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑄 ‘ 𝑖 ) ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 196 | 10 195 | bitrd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷 ) )  →  ( 𝑃  Btwn  〈 𝑍 ,  𝑄 〉  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) |