| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem8.1 | ⊢ 𝐷  =  { 𝑝  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑈  Btwn  〈 𝑍 ,  𝑝 〉  ∨  𝑝  Btwn  〈 𝑍 ,  𝑈 〉 ) } | 
						
							| 2 |  | axcontlem8.2 | ⊢ 𝐹  =  { 〈 𝑥 ,  𝑡 〉  ∣  ( 𝑥  ∈  𝐷  ∧  ( 𝑡  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) } | 
						
							| 3 | 1 2 | axcontlem6 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑃  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 4 | 3 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  ( 𝑃  ∈  𝐷  →  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 5 | 1 2 | axcontlem6 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑄  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 6 | 5 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  ( 𝑄  ∈  𝐷  →  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 7 | 1 2 | axcontlem6 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑅  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 8 | 7 | ex | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  ( 𝑅  ∈  𝐷  →  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 9 | 4 6 8 | 3anim123d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  ( ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 12 |  | 3an6 | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 13 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 14 |  | simplr1 | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 16 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑃 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 17 | 16 | simplbi | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 20 |  | simprrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 22 |  | simprrr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 24 | 22 23 | breqtrrd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 26 |  | simplr2 | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 28 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑄 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 29 | 28 | simplbi | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 30 | 27 29 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 31 | 18 30 | letri3d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  ↔  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 32 | 21 25 31 | mpbir2and | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 33 |  | simpll | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 34 |  | simpll2 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 36 | 35 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 37 |  | fveecn | ⊢ ( ( 𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 38 | 36 37 | sylancom | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 39 |  | simpll3 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  →  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 42 |  | fveecn | ⊢ ( ( 𝑈  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 43 | 41 42 | sylancom | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 44 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 45 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 46 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 47 | 44 45 46 | sylancr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 48 |  | simprl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 49 | 47 48 | mulcld | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 50 |  | mulcl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 51 | 50 | adantrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 52 | 49 51 | addcld | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 53 | 52 | mullidd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 54 | 52 | mul02d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  0 ) | 
						
							| 55 | 53 54 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  0 ) ) | 
						
							| 56 | 52 | addridd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  0 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 57 | 55 56 | eqtr2d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 58 | 57 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 59 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  =  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 61 |  | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 62 | 60 61 | oveq12d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 63 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  =  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 65 |  | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 66 | 64 65 | oveq12d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 69 | 62 68 | eqeqan12d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 70 | 69 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 71 | 58 70 | mpbid | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 72 | 19 32 33 38 43 71 | syl122anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 73 | 72 | ralrimiva | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 74 |  | oveq2 | ⊢ ( 𝑡  =  0  →  ( 1  −  𝑡 )  =  ( 1  −  0 ) ) | 
						
							| 75 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 76 | 74 75 | eqtrdi | ⊢ ( 𝑡  =  0  →  ( 1  −  𝑡 )  =  1 ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝑡  =  0  →  ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 78 |  | oveq1 | ⊢ ( 𝑡  =  0  →  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 79 | 77 78 | oveq12d | ⊢ ( 𝑡  =  0  →  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 80 | 79 | eqeq2d | ⊢ ( 𝑡  =  0  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 81 | 80 | ralbidv | ⊢ ( 𝑡  =  0  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 82 | 81 | rspcev | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( 1  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 0  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 83 | 13 73 82 | sylancr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑅 )  →  ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 85 | 26 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 86 | 85 29 | syl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℝ ) | 
						
							| 87 |  | simplr3 | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 89 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑅 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑅 ) ) ) | 
						
							| 90 | 89 | simplbi | ⊢ ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 91 | 88 90 | syl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 92 | 14 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 93 | 92 17 | syl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 94 |  | simprrr | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 95 | 86 91 93 94 | lesub1dd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ≤  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 96 | 86 93 | resubcld | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 97 |  | simprrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 98 | 86 93 | subge0d | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ↔  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 99 | 97 98 | mpbird | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  0  ≤  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 100 | 91 93 | resubcld | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 101 | 93 86 91 97 94 | letrd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 102 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 103 | 102 | necomd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑅 )  ≠  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 104 | 93 91 101 103 | leneltd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  <  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 105 | 93 91 | posdifd | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  <  ( 𝐹 ‘ 𝑅 )  ↔  0  <  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 106 | 104 105 | mpbid | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  0  <  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 107 |  | divelunit | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ  ∧  0  ≤  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℝ  ∧  0  <  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ( 0 [,] 1 )  ↔  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ≤  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 108 | 96 99 100 106 107 | syl22anc | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ( 0 [,] 1 )  ↔  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ≤  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 109 | 95 108 | mpbird | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ( 0 [,] 1 ) ) | 
						
							| 110 | 14 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 111 | 17 | recnd | ⊢ ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 113 |  | simpll | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 114 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 115 | 29 | recnd | ⊢ ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 116 | 114 115 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 117 | 87 | ad2antlr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 118 | 90 | recnd | ⊢ ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  →  ( 𝐹 ‘ 𝑅 )  ∈  ℂ ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ℂ ) | 
						
							| 120 | 34 | ad2antrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  𝑍  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 121 | 120 37 | sylan | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 122 | 39 | ad2antrl | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 123 | 122 42 | sylan | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 124 |  | simp2r | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  ℂ ) | 
						
							| 125 |  | simp2l | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ℂ ) | 
						
							| 126 | 124 125 | subcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 127 |  | simp1l | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 128 | 44 127 46 | sylancr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 129 | 126 128 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 130 | 125 127 | subcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 131 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 132 | 44 124 131 | sylancr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 133 | 130 132 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  ∈  ℂ ) | 
						
							| 134 | 124 127 | subcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 135 |  | simp1r | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 136 | 135 | necomd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑅 )  ≠  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 137 | 124 127 136 | subne0d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ≠  0 ) | 
						
							| 138 | 129 133 134 137 | divdird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 139 | 134 | mulridd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  =  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 140 | 134 125 | mulcomd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑄 )  ·  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 141 | 125 124 127 | subdid | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 142 | 140 141 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 143 | 139 142 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 144 |  | subdi | ⊢ ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 145 | 44 144 | mp3an2 | ⊢ ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 146 | 134 125 145 | syl2anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) ) ) ) | 
						
							| 147 |  | subdi | ⊢ ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 148 | 44 147 | mp3an2 | ⊢ ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 149 | 126 127 148 | syl2anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 150 | 126 | mulridd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  1 )  =  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 151 | 124 125 127 | subdird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝐹 ‘ 𝑃 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 152 | 124 127 | mulcomd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝐹 ‘ 𝑃 ) )  =  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) | 
						
							| 153 | 152 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝐹 ‘ 𝑃 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 154 | 151 153 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 155 | 150 154 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  −  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 156 | 149 155 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  −  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 157 |  | subdi | ⊢ ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 158 | 44 157 | mp3an2 | ⊢ ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 159 | 130 124 158 | syl2anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 160 | 130 | mulridd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  =  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 161 | 125 127 124 | subdird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 162 | 160 161 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  1 )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 163 | 159 162 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 164 | 156 163 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  −  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 165 | 127 124 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 166 | 125 127 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 167 | 165 166 | subcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 168 |  | mulcl | ⊢ ( ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 169 | 168 | 3ad2ant2 | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 170 | 169 165 | subcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ∈  ℂ ) | 
						
							| 171 | 126 130 167 170 | addsub4d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  +  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  −  ( ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  −  ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 172 | 124 125 127 | npncand | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  +  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 173 | 165 166 169 | npncan3d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 174 | 172 173 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  +  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  −  ( ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 175 | 164 171 174 | 3eqtr2d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 176 | 143 146 175 | 3eqtr4d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 177 | 129 133 | addcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ∈  ℂ ) | 
						
							| 178 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ℂ )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 179 | 44 125 178 | sylancr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ∈  ℂ ) | 
						
							| 180 | 177 134 179 137 | divmuld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ↔  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 181 | 176 180 | mpbird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( 1  −  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 182 | 126 128 134 137 | div23d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 183 | 134 130 134 137 | divsubdird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 184 | 124 125 127 | nnncan2d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) ) ) | 
						
							| 185 | 184 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  −  ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 186 | 134 137 | dividd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  1 ) | 
						
							| 187 | 186 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 188 | 183 185 187 | 3eqtr3d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 189 | 188 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 190 | 182 189 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 191 | 130 132 134 137 | div23d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 192 | 190 191 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 193 | 138 181 192 | 3eqtr3d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( 𝐹 ‘ 𝑄 ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 194 | 193 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 195 | 126 127 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 196 | 130 124 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 197 | 195 196 134 137 | divdird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 198 | 154 161 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝐹 ‘ 𝑅 ) )  −  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 199 | 173 198 142 | 3eqtr4rd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 200 | 195 196 | addcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ∈  ℂ ) | 
						
							| 201 | 200 134 125 137 | divmuld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( 𝐹 ‘ 𝑄 )  ↔  ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑄 ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) ) | 
						
							| 202 | 199 201 | mpbird | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( 𝐹 ‘ 𝑄 ) ) | 
						
							| 203 | 126 127 134 137 | div23d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 204 | 188 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 205 | 203 204 | eqtrd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 206 | 130 124 134 137 | div23d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) | 
						
							| 207 | 205 206 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝐹 ‘ 𝑅 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 208 | 197 202 207 | 3eqtr3d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) ) ) | 
						
							| 209 | 208 | oveq1d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 210 | 194 209 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 211 | 130 134 137 | divcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 212 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ℂ )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ∈  ℂ ) | 
						
							| 213 | 44 211 212 | sylancr | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ∈  ℂ ) | 
						
							| 214 |  | simp3l | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝑍 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 215 | 128 214 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 216 | 213 215 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 217 | 132 214 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 218 | 211 217 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 219 |  | simp3r | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 220 | 127 219 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 221 | 213 220 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 222 | 124 219 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 223 | 211 222 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∈  ℂ ) | 
						
							| 224 | 216 218 221 223 | add4d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 225 | 213 128 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ℂ ) | 
						
							| 226 | 211 132 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  ∈  ℂ ) | 
						
							| 227 | 213 128 214 | mulassd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 228 | 211 132 214 | mulassd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) | 
						
							| 229 | 227 228 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) ) | 
						
							| 230 | 225 214 226 229 | joinlmuladdmuld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) ) ) | 
						
							| 231 | 213 127 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 232 | 211 124 | mulcld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) )  ∈  ℂ ) | 
						
							| 233 | 213 127 219 | mulassd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 234 | 211 124 219 | mulassd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 235 | 233 234 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑈 ‘ 𝑖 ) )  +  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 236 | 231 219 232 235 | joinlmuladdmuld | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 237 | 230 236 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) )  +  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 238 | 213 215 220 | adddid | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 239 | 211 217 222 | adddid | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 240 | 238 239 | oveq12d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 241 | 224 237 240 | 3eqtr4rd | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑃 ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 1  −  ( 𝐹 ‘ 𝑅 ) ) ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( 𝐹 ‘ 𝑃 ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( 𝐹 ‘ 𝑅 ) ) )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 242 | 210 241 | eqtr4d | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ℂ  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ℂ )  ∧  ( ( 𝑍 ‘ 𝑖 )  ∈  ℂ  ∧  ( 𝑈 ‘ 𝑖 )  ∈  ℂ ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 243 | 112 113 116 119 121 123 242 | syl222anc | ⊢ ( ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 244 | 243 | ralrimiva | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 245 |  | oveq2 | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 1  −  𝑡 )  =  ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) ) ) | 
						
							| 246 | 245 | oveq1d | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 247 |  | oveq1 | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  =  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 248 | 246 247 | oveq12d | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 249 | 248 | eqeq2d | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 250 | 249 | ralbidv | ⊢ ( 𝑡  =  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 251 | 250 | rspcev | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ∈  ( 0 [,] 1 )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( ( ( ( 𝐹 ‘ 𝑄 )  −  ( 𝐹 ‘ 𝑃 ) )  /  ( ( 𝐹 ‘ 𝑅 )  −  ( 𝐹 ‘ 𝑃 ) ) )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 252 | 109 244 251 | syl2anc | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  ∧  ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 253 | 252 | ex | ⊢ ( ( 𝐹 ‘ 𝑃 )  ≠  ( 𝐹 ‘ 𝑅 )  →  ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 254 | 84 253 | pm2.61ine | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 255 |  | r19.26-3 | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 256 |  | simp2 | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 257 |  | oveq2 | ⊢ ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  →  ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  =  ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 258 |  | oveq2 | ⊢ ( ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  →  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 259 | 257 258 | oveqan12d | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 260 | 259 | 3adant2 | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 261 | 256 260 | eqeq12d | ⊢ ( ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 262 | 261 | ralimi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 263 |  | ralbi | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 264 | 262 263 | syl | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 265 | 264 | rexbidv | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) )  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 266 | 265 | biimprcd | ⊢ ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 267 | 255 266 | biimtrrid | ⊢ ( ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  +  ( 𝑡  ·  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 268 | 254 267 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 269 | 268 | an32s | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 270 | 269 | expimpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 271 | 270 | adantlr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 272 | 12 271 | biimtrid | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑄 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑄 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑅 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑅 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 273 | 11 272 | mpd | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) | 
						
							| 274 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  →  𝑁  ∈  ℕ ) | 
						
							| 275 | 1 | ssrab3 | ⊢ 𝐷  ⊆  ( 𝔼 ‘ 𝑁 ) | 
						
							| 276 | 275 | sseli | ⊢ ( 𝑄  ∈  𝐷  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 277 | 275 | sseli | ⊢ ( 𝑃  ∈  𝐷  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 278 | 275 | sseli | ⊢ ( 𝑅  ∈  𝐷  →  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 279 | 276 277 278 | 3anim123i | ⊢ ( ( 𝑄  ∈  𝐷  ∧  𝑃  ∈  𝐷  ∧  𝑅  ∈  𝐷 )  →  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 280 | 279 | 3com12 | ⊢ ( ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 )  →  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 281 |  | brbtwn | ⊢ ( ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑄  Btwn  〈 𝑃 ,  𝑅 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 282 | 281 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑅  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑄  Btwn  〈 𝑃 ,  𝑅 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 283 | 274 280 282 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  →  ( 𝑄  Btwn  〈 𝑃 ,  𝑅 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 284 | 283 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  ( 𝑄  Btwn  〈 𝑃 ,  𝑅 〉  ↔  ∃ 𝑡  ∈  ( 0 [,] 1 ) ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑃 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑅 ‘ 𝑖 ) ) ) ) ) | 
						
							| 285 | 273 284 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) ) )  →  𝑄  Btwn  〈 𝑃 ,  𝑅 〉 ) | 
						
							| 286 | 285 | ex | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  ( 𝑃  ∈  𝐷  ∧  𝑄  ∈  𝐷  ∧  𝑅  ∈  𝐷 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ≤  ( 𝐹 ‘ 𝑄 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝐹 ‘ 𝑅 ) )  →  𝑄  Btwn  〈 𝑃 ,  𝑅 〉 ) ) |