Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem8.1 |
⊢ 𝐷 = { 𝑝 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn 〈 𝑍 , 𝑝 〉 ∨ 𝑝 Btwn 〈 𝑍 , 𝑈 〉 ) } |
2 |
|
axcontlem8.2 |
⊢ 𝐹 = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) } |
3 |
1 2
|
axcontlem6 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑃 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
4 |
3
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) → ( 𝑃 ∈ 𝐷 → ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
5 |
1 2
|
axcontlem6 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑄 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
6 |
5
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) → ( 𝑄 ∈ 𝐷 → ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
7 |
1 2
|
axcontlem6 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑅 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
8 |
7
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) → ( 𝑅 ∈ 𝐷 → ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
9 |
4 6 8
|
3anim123d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) → ( ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
12 |
|
3an6 |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
13 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
14 |
|
simplr1 |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ) |
16 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑃 ) ) ) |
17 |
16
|
simplbi |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
18 |
15 17
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) |
20 |
|
simprrl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ) |
22 |
|
simprrr |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) |
23 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) |
24 |
22 23
|
breqtrrd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑃 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑃 ) ) |
26 |
|
simplr2 |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ) |
28 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑄 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑄 ) ) ) |
29 |
28
|
simplbi |
⊢ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑄 ) ∈ ℝ ) |
30 |
27 29
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ℝ ) |
31 |
18 30
|
letri3d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ↔ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑃 ) ) ) ) |
32 |
21 25 31
|
mpbir2and |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ) |
33 |
|
simpll |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) |
34 |
|
simpll2 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) |
36 |
35
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) |
37 |
|
fveecn |
⊢ ( ( 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℂ ) |
38 |
36 37
|
sylancom |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℂ ) |
39 |
|
simpll3 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) → 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) |
42 |
|
fveecn |
⊢ ( ( 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) |
43 |
41 42
|
sylancom |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) |
44 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
45 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) |
46 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) → ( 1 − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
47 |
44 45 46
|
sylancr |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
48 |
|
simprl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℂ ) |
49 |
47 48
|
mulcld |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ∈ ℂ ) |
50 |
|
mulcl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ∈ ℂ ) |
51 |
50
|
adantrl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ∈ ℂ ) |
52 |
49 51
|
addcld |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∈ ℂ ) |
53 |
52
|
mulid2d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
54 |
52
|
mul02d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = 0 ) |
55 |
53 54
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + 0 ) ) |
56 |
52
|
addid1d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + 0 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
57 |
55 56
|
eqtr2d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
58 |
57
|
3adant2 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
59 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) → ( 1 − ( 𝐹 ‘ 𝑃 ) ) = ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) → ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) |
61 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) |
62 |
60 61
|
oveq12d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
63 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( 1 − ( 𝐹 ‘ 𝑃 ) ) = ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) |
64 |
63
|
oveq1d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) |
65 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) |
66 |
64 65
|
oveq12d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
67 |
66
|
oveq2d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
68 |
67
|
oveq2d |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
69 |
62 68
|
eqeqan12d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) → ( ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
70 |
69
|
3ad2ant2 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
71 |
58 70
|
mpbid |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
72 |
19 32 33 38 43 71
|
syl122anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
73 |
72
|
ralrimiva |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
74 |
|
oveq2 |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
75 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
76 |
74 75
|
eqtrdi |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = 1 ) |
77 |
76
|
oveq1d |
⊢ ( 𝑡 = 0 → ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
78 |
|
oveq1 |
⊢ ( 𝑡 = 0 → ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
79 |
77 78
|
oveq12d |
⊢ ( 𝑡 = 0 → ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
80 |
79
|
eqeq2d |
⊢ ( 𝑡 = 0 → ( ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
81 |
80
|
ralbidv |
⊢ ( 𝑡 = 0 → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
82 |
81
|
rspcev |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( 1 · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 0 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
83 |
13 73 82
|
sylancr |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
84 |
83
|
ex |
⊢ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑅 ) → ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
85 |
26
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ) |
86 |
85 29
|
syl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ℝ ) |
87 |
|
simplr3 |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
88 |
87
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
89 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑅 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑅 ) ) ) |
90 |
89
|
simplbi |
⊢ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑅 ) ∈ ℝ ) |
91 |
88 90
|
syl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ℝ ) |
92 |
14
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ) |
93 |
92 17
|
syl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
94 |
|
simprrr |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) |
95 |
86 91 93 94
|
lesub1dd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ≤ ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
96 |
86 93
|
resubcld |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ) |
97 |
|
simprrl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ) |
98 |
86 93
|
subge0d |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ↔ ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ) ) |
99 |
97 98
|
mpbird |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
100 |
91 93
|
resubcld |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ) |
101 |
93 86 91 97 94
|
letrd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑅 ) ) |
102 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) |
103 |
102
|
necomd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑅 ) ≠ ( 𝐹 ‘ 𝑃 ) ) |
104 |
93 91 101 103
|
leneltd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) < ( 𝐹 ‘ 𝑅 ) ) |
105 |
93 91
|
posdifd |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) < ( 𝐹 ‘ 𝑅 ) ↔ 0 < ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) |
106 |
104 105
|
mpbid |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → 0 < ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
107 |
|
divelunit |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ∧ 0 < ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ≤ ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) |
108 |
96 99 100 106 107
|
syl22anc |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ≤ ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) |
109 |
95 108
|
mpbird |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( 0 [,] 1 ) ) |
110 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ) |
111 |
17
|
recnd |
⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) |
112 |
110 111
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) |
113 |
|
simpll |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) |
114 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ) |
115 |
29
|
recnd |
⊢ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) |
116 |
114 115
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) |
117 |
87
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
118 |
90
|
recnd |
⊢ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) → ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) |
119 |
117 118
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) |
120 |
34
|
ad2antrl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ) |
121 |
120 37
|
sylan |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℂ ) |
122 |
39
|
ad2antrl |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) |
123 |
122 42
|
sylan |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) |
124 |
|
simp2r |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) |
125 |
|
simp2l |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) |
126 |
124 125
|
subcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) ∈ ℂ ) |
127 |
|
simp1l |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) |
128 |
44 127 46
|
sylancr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
129 |
126 128
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ℂ ) |
130 |
125 127
|
subcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
131 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) → ( 1 − ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
132 |
44 124 131
|
sylancr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
133 |
130 132
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ∈ ℂ ) |
134 |
124 127
|
subcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
135 |
|
simp1r |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) |
136 |
135
|
necomd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑅 ) ≠ ( 𝐹 ‘ 𝑃 ) ) |
137 |
124 127 136
|
subne0d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ≠ 0 ) |
138 |
129 133 134 137
|
divdird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
139 |
134
|
mulid1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) = ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
140 |
134 125
|
mulcomd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑄 ) · ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) |
141 |
125 124 127
|
subdid |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑄 ) · ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
142 |
140 141
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) = ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
143 |
139 142
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
144 |
|
subdi |
⊢ ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) ) ) |
145 |
44 144
|
mp3an2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) ) ) |
146 |
134 125 145
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) ) ) |
147 |
|
subdi |
⊢ ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
148 |
44 147
|
mp3an2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
149 |
126 127 148
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
150 |
126
|
mulid1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · 1 ) = ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) ) |
151 |
124 125 127
|
subdird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝐹 ‘ 𝑅 ) · ( 𝐹 ‘ 𝑃 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
152 |
124 127
|
mulcomd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑅 ) · ( 𝐹 ‘ 𝑃 ) ) = ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) |
153 |
152
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) · ( 𝐹 ‘ 𝑃 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
154 |
151 153
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
155 |
150 154
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) − ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
156 |
149 155
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) − ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
157 |
|
subdi |
⊢ ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
158 |
44 157
|
mp3an2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
159 |
130 124 158
|
syl2anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
160 |
130
|
mulid1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) = ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
161 |
125 127 124
|
subdird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
162 |
160 161
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · 1 ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
163 |
159 162
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
164 |
156 163
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) − ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) |
165 |
127 124
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
166 |
125 127
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
167 |
165 166
|
subcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ∈ ℂ ) |
168 |
|
mulcl |
⊢ ( ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) → ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
169 |
168
|
3ad2ant2 |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
170 |
169 165
|
subcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ∈ ℂ ) |
171 |
126 130 167 170
|
addsub4d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) + ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) − ( ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) − ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) |
172 |
124 125 127
|
npncand |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) + ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) |
173 |
165 166 169
|
npncan3d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) |
174 |
172 173
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) + ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) − ( ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
175 |
164 171 174
|
3eqtr2d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
176 |
143 146 175
|
3eqtr4d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
177 |
129 133
|
addcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) ∈ ℂ ) |
178 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐹 ‘ 𝑄 ) ∈ ℂ ) → ( 1 − ( 𝐹 ‘ 𝑄 ) ) ∈ ℂ ) |
179 |
44 125 178
|
sylancr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( 𝐹 ‘ 𝑄 ) ) ∈ ℂ ) |
180 |
177 134 179 137
|
divmuld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( 1 − ( 𝐹 ‘ 𝑄 ) ) ↔ ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) ) ) |
181 |
176 180
|
mpbird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( 1 − ( 𝐹 ‘ 𝑄 ) ) ) |
182 |
126 128 134 137
|
div23d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) ) |
183 |
134 130 134 137
|
divsubdird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
184 |
124 125 127
|
nnncan2d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) ) |
185 |
184
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) − ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) |
186 |
134 137
|
dividd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = 1 ) |
187 |
186
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) = ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
188 |
183 185 187
|
3eqtr3d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
189 |
188
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) ) |
190 |
182 189
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) ) |
191 |
130 132 134 137
|
div23d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) |
192 |
190 191
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
193 |
138 181 192
|
3eqtr3d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( 𝐹 ‘ 𝑄 ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
194 |
193
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) · ( 𝑍 ‘ 𝑖 ) ) ) |
195 |
126 127
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
196 |
130 124
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
197 |
195 196 134 137
|
divdird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
198 |
154 161
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( 𝐹 ‘ 𝑄 ) · ( 𝐹 ‘ 𝑅 ) ) − ( ( 𝐹 ‘ 𝑃 ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
199 |
173 198 142
|
3eqtr4rd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
200 |
195 196
|
addcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ∈ ℂ ) |
201 |
200 134 125 137
|
divmuld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑄 ) ↔ ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑄 ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) ) |
202 |
199 201
|
mpbird |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑄 ) ) |
203 |
126 127 134 137
|
div23d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑃 ) ) ) |
204 |
188
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑃 ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) ) |
205 |
203 204
|
eqtrd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) ) |
206 |
130 124 134 137
|
div23d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) |
207 |
205 206
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑄 ) ) · ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) · ( 𝐹 ‘ 𝑅 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
208 |
197 202 207
|
3eqtr3d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝐹 ‘ 𝑄 ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) ) |
209 |
208
|
oveq1d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑈 ‘ 𝑖 ) ) ) |
210 |
194 209
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
211 |
130 134 137
|
divcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ℂ ) |
212 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ℂ ) → ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ∈ ℂ ) |
213 |
44 211 212
|
sylancr |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ∈ ℂ ) |
214 |
|
simp3l |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝑍 ‘ 𝑖 ) ∈ ℂ ) |
215 |
128 214
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ∈ ℂ ) |
216 |
213 215
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ∈ ℂ ) |
217 |
132 214
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ∈ ℂ ) |
218 |
211 217
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ∈ ℂ ) |
219 |
|
simp3r |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) |
220 |
127 219
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ∈ ℂ ) |
221 |
213 220
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∈ ℂ ) |
222 |
124 219
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ∈ ℂ ) |
223 |
211 222
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∈ ℂ ) |
224 |
216 218 221 223
|
add4d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) + ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
225 |
213 128
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ℂ ) |
226 |
211 132
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ∈ ℂ ) |
227 |
213 128 214
|
mulassd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) |
228 |
211 132 214
|
mulassd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) |
229 |
227 228
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑍 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) ) |
230 |
225 214 226 229
|
joinlmuladdmuld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) · ( 𝑍 ‘ 𝑖 ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) ) |
231 |
213 127
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
232 |
211 124
|
mulcld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ∈ ℂ ) |
233 |
213 127 219
|
mulassd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
234 |
211 124 219
|
mulassd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
235 |
233 234
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) · ( 𝑈 ‘ 𝑖 ) ) + ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
236 |
231 219 232 235
|
joinlmuladdmuld |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑈 ‘ 𝑖 ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
237 |
230 236
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) ) + ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
238 |
213 215 220
|
adddid |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
239 |
211 217 222
|
adddid |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
240 |
238 239
|
oveq12d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
241 |
224 237 240
|
3eqtr4rd |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 1 − ( 𝐹 ‘ 𝑃 ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 1 − ( 𝐹 ‘ 𝑅 ) ) ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( 𝐹 ‘ 𝑃 ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( 𝐹 ‘ 𝑅 ) ) ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
242 |
210 241
|
eqtr4d |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑅 ) ∈ ℂ ) ∧ ( ( 𝑍 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝑈 ‘ 𝑖 ) ∈ ℂ ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
243 |
112 113 116 119 121 123 242
|
syl222anc |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
244 |
243
|
ralrimiva |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
245 |
|
oveq2 |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( 1 − 𝑡 ) = ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
246 |
245
|
oveq1d |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
247 |
|
oveq1 |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) = ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
248 |
246 247
|
oveq12d |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
249 |
248
|
eqeq2d |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
250 |
249
|
ralbidv |
⊢ ( 𝑡 = ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
251 |
250
|
rspcev |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ∈ ( 0 [,] 1 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( ( ( ( 𝐹 ‘ 𝑄 ) − ( 𝐹 ‘ 𝑃 ) ) / ( ( 𝐹 ‘ 𝑅 ) − ( 𝐹 ‘ 𝑃 ) ) ) · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
252 |
109 244 251
|
syl2anc |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) ∧ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
253 |
252
|
ex |
⊢ ( ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑅 ) → ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
254 |
84 253
|
pm2.61ine |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
255 |
|
r19.26-3 |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
256 |
|
simp2 |
⊢ ( ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
257 |
|
oveq2 |
⊢ ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) → ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) = ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
258 |
|
oveq2 |
⊢ ( ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) → ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) = ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
259 |
257 258
|
oveqan12d |
⊢ ( ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
260 |
259
|
3adant2 |
⊢ ( ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) |
261 |
256 260
|
eqeq12d |
⊢ ( ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
262 |
261
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
263 |
|
ralbi |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
264 |
262 263
|
syl |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
265 |
264
|
rexbidv |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) ) ) |
266 |
265
|
biimprcd |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
267 |
255 266
|
syl5bir |
⊢ ( ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) + ( 𝑡 · ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
268 |
254 267
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
269 |
268
|
an32s |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
270 |
269
|
expimpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
271 |
270
|
adantlr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
272 |
12 271
|
syl5bi |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑄 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑄 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑅 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑅 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑅 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
273 |
11 272
|
mpd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) |
274 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) → 𝑁 ∈ ℕ ) |
275 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ( 𝔼 ‘ 𝑁 ) |
276 |
275
|
sseli |
⊢ ( 𝑄 ∈ 𝐷 → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
277 |
275
|
sseli |
⊢ ( 𝑃 ∈ 𝐷 → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
278 |
275
|
sseli |
⊢ ( 𝑅 ∈ 𝐷 → 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) |
279 |
276 277 278
|
3anim123i |
⊢ ( ( 𝑄 ∈ 𝐷 ∧ 𝑃 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
280 |
279
|
3com12 |
⊢ ( ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) → ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
281 |
|
brbtwn |
⊢ ( ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
282 |
281
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
283 |
274 280 282
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
284 |
283
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ↔ ∃ 𝑡 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑃 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑅 ‘ 𝑖 ) ) ) ) ) |
285 |
273 284
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) ) → 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ) |
286 |
285
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ ( 𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑄 ) ∧ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ 𝑅 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑅 〉 ) ) |