Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem5.1 |
⊢ 𝐷 = { 𝑝 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑈 Btwn 〈 𝑍 , 𝑝 〉 ∨ 𝑝 Btwn 〈 𝑍 , 𝑈 〉 ) } |
2 |
|
axcontlem5.2 |
⊢ 𝐹 = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ ( 𝑡 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑍 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑈 ‘ 𝑖 ) ) ) ) ) } |
3 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) |
4 |
2
|
axcontlem1 |
⊢ 𝐹 = { 〈 𝑦 , 𝑠 〉 ∣ ( 𝑦 ∈ 𝐷 ∧ ( 𝑠 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 ) = ( ( ( 1 − 𝑠 ) · ( 𝑍 ‘ 𝑗 ) ) + ( 𝑠 · ( 𝑈 ‘ 𝑗 ) ) ) ) ) } |
5 |
1 4
|
axcontlem5 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑃 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) ) ) ) |
6 |
3 5
|
mpbii |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑃 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝑖 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑍 ‘ 𝑗 ) = ( 𝑍 ‘ 𝑖 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) = ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑈 ‘ 𝑗 ) = ( 𝑈 ‘ 𝑖 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) |
12 |
9 11
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
13 |
7 12
|
eqeq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑃 ‘ 𝑗 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) ↔ ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) |
15 |
14
|
anbi2i |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑗 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑗 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |
16 |
6 15
|
sylib |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑍 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑈 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑍 ≠ 𝑈 ) ∧ 𝑃 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 ) = ( ( ( 1 − ( 𝐹 ‘ 𝑃 ) ) · ( 𝑍 ‘ 𝑖 ) ) + ( ( 𝐹 ‘ 𝑃 ) · ( 𝑈 ‘ 𝑖 ) ) ) ) ) |