| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem5.1 | ⊢ 𝐷  =  { 𝑝  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑈  Btwn  〈 𝑍 ,  𝑝 〉  ∨  𝑝  Btwn  〈 𝑍 ,  𝑈 〉 ) } | 
						
							| 2 |  | axcontlem5.2 | ⊢ 𝐹  =  { 〈 𝑥 ,  𝑡 〉  ∣  ( 𝑥  ∈  𝐷  ∧  ( 𝑡  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) } | 
						
							| 3 |  | eqid | ⊢ ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑃 ) | 
						
							| 4 | 2 | axcontlem1 | ⊢ 𝐹  =  { 〈 𝑦 ,  𝑠 〉  ∣  ( 𝑦  ∈  𝐷  ∧  ( 𝑠  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑗  ∈  ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑗 )  =  ( ( ( 1  −  𝑠 )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( 𝑠  ·  ( 𝑈 ‘ 𝑗 ) ) ) ) ) } | 
						
							| 5 | 1 4 | axcontlem5 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑃  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐹 ‘ 𝑃 )  ↔  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑗  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbii | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑃  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑗  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑍 ‘ 𝑗 )  =  ( 𝑍 ‘ 𝑖 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  =  ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑈 ‘ 𝑗 )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) | 
						
							| 12 | 9 11 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 13 | 7 12 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑃 ‘ 𝑗 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) )  ↔  ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑗  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑗  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑗 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑗 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑗 ) ) ) )  ↔  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) | 
						
							| 16 | 6 15 | sylib | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑍  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑈  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  𝑍  ≠  𝑈 )  ∧  𝑃  ∈  𝐷 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  ( 0 [,) +∞ )  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑁 ) ( 𝑃 ‘ 𝑖 )  =  ( ( ( 1  −  ( 𝐹 ‘ 𝑃 ) )  ·  ( 𝑍 ‘ 𝑖 ) )  +  ( ( 𝐹 ‘ 𝑃 )  ·  ( 𝑈 ‘ 𝑖 ) ) ) ) ) |