| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axcontlem5.1 |  |-  D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } | 
						
							| 2 |  | axcontlem5.2 |  |-  F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } | 
						
							| 3 |  | eqid |  |-  ( F ` P ) = ( F ` P ) | 
						
							| 4 | 2 | axcontlem1 |  |-  F = { <. y , s >. | ( y e. D /\ ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) } | 
						
							| 5 | 1 4 | axcontlem5 |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = ( F ` P ) <-> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbii |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( j = i -> ( P ` j ) = ( P ` i ) ) | 
						
							| 8 |  | fveq2 |  |-  ( j = i -> ( Z ` j ) = ( Z ` i ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( j = i -> ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) = ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( j = i -> ( U ` j ) = ( U ` i ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( j = i -> ( ( F ` P ) x. ( U ` j ) ) = ( ( F ` P ) x. ( U ` i ) ) ) | 
						
							| 12 | 9 11 | oveq12d |  |-  ( j = i -> ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) | 
						
							| 13 | 7 12 | eqeq12d |  |-  ( j = i -> ( ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) <-> ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) | 
						
							| 14 | 13 | cbvralvw |  |-  ( A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) <-> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) | 
						
							| 16 | 6 15 | sylib |  |-  ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) |