Step |
Hyp |
Ref |
Expression |
1 |
|
axcontlem5.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
2 |
|
axcontlem5.2 |
|- F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
3 |
|
eqid |
|- ( F ` P ) = ( F ` P ) |
4 |
2
|
axcontlem1 |
|- F = { <. y , s >. | ( y e. D /\ ( s e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( y ` j ) = ( ( ( 1 - s ) x. ( Z ` j ) ) + ( s x. ( U ` j ) ) ) ) ) } |
5 |
1 4
|
axcontlem5 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) = ( F ` P ) <-> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) ) ) |
6 |
3 5
|
mpbii |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) ) |
7 |
|
fveq2 |
|- ( j = i -> ( P ` j ) = ( P ` i ) ) |
8 |
|
fveq2 |
|- ( j = i -> ( Z ` j ) = ( Z ` i ) ) |
9 |
8
|
oveq2d |
|- ( j = i -> ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) = ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) |
10 |
|
fveq2 |
|- ( j = i -> ( U ` j ) = ( U ` i ) ) |
11 |
10
|
oveq2d |
|- ( j = i -> ( ( F ` P ) x. ( U ` j ) ) = ( ( F ` P ) x. ( U ` i ) ) ) |
12 |
9 11
|
oveq12d |
|- ( j = i -> ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) |
13 |
7 12
|
eqeq12d |
|- ( j = i -> ( ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) <-> ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) |
14 |
13
|
cbvralvw |
|- ( A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) <-> A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) |
15 |
14
|
anbi2i |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. j e. ( 1 ... N ) ( P ` j ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` j ) ) + ( ( F ` P ) x. ( U ` j ) ) ) ) <-> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) |
16 |
6 15
|
sylib |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) |