Metamath Proof Explorer


Theorem lemul1a

Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion lemul1a ABC0CABACBC

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0C0C0<C0=C
3 1 2 mpan C0C0<C0=C
4 3 pm5.32i C0CC0<C0=C
5 lemul1 ABC0<CABACBC
6 5 biimpd ABC0<CABACBC
7 6 3expia ABC0<CABACBC
8 7 com12 C0<CABABACBC
9 1 leidi 00
10 recn AA
11 10 mul01d AA0=0
12 recn BB
13 12 mul01d BB0=0
14 11 13 breqan12d ABA0B000
15 9 14 mpbiri ABA0B0
16 oveq2 0=CA0=AC
17 oveq2 0=CB0=BC
18 16 17 breq12d 0=CA0B0ACBC
19 15 18 imbitrid 0=CABACBC
20 19 a1dd 0=CABABACBC
21 20 adantl C0=CABABACBC
22 8 21 jaodan C0<C0=CABABACBC
23 4 22 sylbi C0CABABACBC
24 23 com12 ABC0CABACBC
25 24 3impia ABC0CABACBC
26 25 imp ABC0CABACBC