Metamath Proof Explorer


Theorem axdc4

Description: A more general version of axdc3 that allows the function F to vary with k . (Contributed by Mario Carneiro, 31-Jan-2013)

Ref Expression
Hypothesis axdc4.1 𝐴 ∈ V
Assertion axdc4 ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 axdc4.1 𝐴 ∈ V
2 eqid ( 𝑛 ∈ ω , 𝑥𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) ) = ( 𝑛 ∈ ω , 𝑥𝐴 ↦ ( { suc 𝑛 } × ( 𝑛 𝐹 𝑥 ) ) )
3 1 2 axdc4lem ( ( 𝐶𝐴𝐹 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝑘 𝐹 ( 𝑔𝑘 ) ) ) )