Metamath Proof Explorer


Theorem axdc3

Description: Dependent Choice. Axiom DC1 of Schechter p. 149, with the addition of an initial value C . This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013)

Ref Expression
Hypothesis axdc3.1 𝐴 ∈ V
Assertion axdc3 ( ( 𝐶𝐴𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 axdc3.1 𝐴 ∈ V
2 feq1 ( 𝑡 = 𝑠 → ( 𝑡 : suc 𝑛𝐴𝑠 : suc 𝑛𝐴 ) )
3 fveq1 ( 𝑡 = 𝑠 → ( 𝑡 ‘ ∅ ) = ( 𝑠 ‘ ∅ ) )
4 3 eqeq1d ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ ∅ ) = 𝐶 ↔ ( 𝑠 ‘ ∅ ) = 𝐶 ) )
5 fveq1 ( 𝑡 = 𝑠 → ( 𝑡 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑗 ) )
6 fveq1 ( 𝑡 = 𝑠 → ( 𝑡𝑗 ) = ( 𝑠𝑗 ) )
7 6 fveq2d ( 𝑡 = 𝑠 → ( 𝐹 ‘ ( 𝑡𝑗 ) ) = ( 𝐹 ‘ ( 𝑠𝑗 ) ) )
8 5 7 eleq12d ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠𝑗 ) ) ) )
9 8 ralbidv ( 𝑡 = 𝑠 → ( ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ↔ ∀ 𝑗𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠𝑗 ) ) ) )
10 suceq ( 𝑗 = 𝑘 → suc 𝑗 = suc 𝑘 )
11 10 fveq2d ( 𝑗 = 𝑘 → ( 𝑠 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑘 ) )
12 2fveq3 ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( 𝑠𝑗 ) ) = ( 𝐹 ‘ ( 𝑠𝑘 ) ) )
13 11 12 eleq12d ( 𝑗 = 𝑘 → ( ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) )
14 13 cbvralvw ( ∀ 𝑗𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠𝑗 ) ) ↔ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) )
15 9 14 bitrdi ( 𝑡 = 𝑠 → ( ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ↔ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) )
16 2 4 15 3anbi123d ( 𝑡 = 𝑠 → ( ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) ↔ ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) ) )
17 16 rexbidv ( 𝑡 = 𝑠 → ( ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) ) )
18 17 cbvabv { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) } = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) }
19 eqid ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) = ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } )
20 1 18 19 axdc3lem4 ( ( 𝐶𝐴𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔𝑘 ) ) ) )