| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axdc3lem4.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
axdc3lem4.2 |
⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
| 3 |
|
axdc3lem4.3 |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) |
| 4 |
|
peano1 |
⊢ ∅ ∈ ω |
| 5 |
|
eqid |
⊢ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } |
| 6 |
|
fsng |
⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ↔ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } ) ) |
| 7 |
4 6
|
mpan |
⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ↔ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } ) ) |
| 8 |
5 7
|
mpbiri |
⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ) |
| 9 |
|
snssi |
⊢ ( 𝐶 ∈ 𝐴 → { 𝐶 } ⊆ 𝐴 ) |
| 10 |
8 9
|
fssd |
⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ 𝐴 ) |
| 11 |
|
suc0 |
⊢ suc ∅ = { ∅ } |
| 12 |
11
|
feq2i |
⊢ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ↔ { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ 𝐴 ) |
| 13 |
10 12
|
sylibr |
⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ) |
| 14 |
|
fvsng |
⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ) |
| 15 |
4 14
|
mpan |
⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ) |
| 16 |
|
ral0 |
⊢ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝐶 ∈ 𝐴 → ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) |
| 18 |
13 15 17
|
3jca |
⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 19 |
|
suceq |
⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) |
| 20 |
19
|
feq2d |
⊢ ( 𝑚 = ∅ → ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ↔ { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ) ) |
| 21 |
|
raleq |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 22 |
20 21
|
3anbi13d |
⊢ ( 𝑚 = ∅ → ( ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ↔ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) ) |
| 23 |
22
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) → ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 24 |
4 18 23
|
sylancr |
⊢ ( 𝐶 ∈ 𝐴 → ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 25 |
|
snex |
⊢ { 〈 ∅ , 𝐶 〉 } ∈ V |
| 26 |
1 2 25
|
axdc3lem3 |
⊢ ( { 〈 ∅ , 𝐶 〉 } ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 27 |
24 26
|
sylibr |
⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } ∈ 𝑆 ) |
| 28 |
27
|
ne0d |
⊢ ( 𝐶 ∈ 𝐴 → 𝑆 ≠ ∅ ) |
| 29 |
1 2
|
axdc3lem |
⊢ 𝑆 ∈ V |
| 30 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ⊆ 𝑆 |
| 31 |
29 30
|
elpwi2 |
⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ 𝒫 𝑆 |
| 32 |
31
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ 𝒫 𝑆 ) |
| 33 |
|
vex |
⊢ 𝑥 ∈ V |
| 34 |
1 2 33
|
axdc3lem3 |
⊢ ( 𝑥 ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 35 |
|
simp2 |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) |
| 36 |
|
vex |
⊢ 𝑚 ∈ V |
| 37 |
36
|
sucid |
⊢ 𝑚 ∈ suc 𝑚 |
| 38 |
|
ffvelcdm |
⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) |
| 39 |
37 38
|
mpan2 |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) |
| 40 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 41 |
39 40
|
sylan2 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 42 |
|
eldifn |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ) |
| 43 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ V |
| 44 |
43
|
elsn |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) = ∅ ) |
| 45 |
44
|
necon3bbii |
⊢ ( ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ≠ ∅ ) |
| 46 |
|
n0 |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 47 |
45 46
|
bitri |
⊢ ( ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 48 |
42 47
|
sylib |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 49 |
41 48
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 50 |
|
simp32 |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) |
| 51 |
|
eldifi |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 ) |
| 52 |
|
elelpwi |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 53 |
52
|
expcom |
⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 54 |
41 51 53
|
3syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 55 |
|
peano2 |
⊢ ( 𝑚 ∈ ω → suc 𝑚 ∈ ω ) |
| 56 |
55
|
3ad2ant3 |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → suc 𝑚 ∈ ω ) |
| 57 |
56
|
3ad2ant1 |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → suc 𝑚 ∈ ω ) |
| 58 |
|
simplr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) |
| 59 |
33
|
dmex |
⊢ dom 𝑥 ∈ V |
| 60 |
|
vex |
⊢ 𝑧 ∈ V |
| 61 |
|
eqid |
⊢ { 〈 dom 𝑥 , 𝑧 〉 } = { 〈 dom 𝑥 , 𝑧 〉 } |
| 62 |
|
fsng |
⊢ ( ( dom 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ↔ { 〈 dom 𝑥 , 𝑧 〉 } = { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 63 |
61 62
|
mpbiri |
⊢ ( ( dom 𝑥 ∈ V ∧ 𝑧 ∈ V ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ) |
| 64 |
59 60 63
|
mp2an |
⊢ { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } |
| 65 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 66 |
65
|
snssd |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → { 𝑧 } ⊆ 𝐴 ) |
| 67 |
|
fss |
⊢ ( ( { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ∧ { 𝑧 } ⊆ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ 𝐴 ) |
| 68 |
64 66 67
|
sylancr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ 𝐴 ) |
| 69 |
|
fdm |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → dom 𝑥 = suc 𝑚 ) |
| 70 |
55
|
adantr |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑚 ∈ ω ) |
| 71 |
|
eleq1 |
⊢ ( dom 𝑥 = suc 𝑚 → ( dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω ) ) |
| 73 |
70 72
|
mpbird |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 ∈ ω ) |
| 74 |
|
nnord |
⊢ ( dom 𝑥 ∈ ω → Ord dom 𝑥 ) |
| 75 |
|
ordirr |
⊢ ( Ord dom 𝑥 → ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 76 |
73 74 75
|
3syl |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 77 |
|
eleq2 |
⊢ ( dom 𝑥 = suc 𝑚 → ( dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚 ) ) |
| 79 |
76 78
|
mtbid |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ¬ dom 𝑥 ∈ suc 𝑚 ) |
| 80 |
|
disjsn |
⊢ ( ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ↔ ¬ dom 𝑥 ∈ suc 𝑚 ) |
| 81 |
79 80
|
sylibr |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 82 |
69 81
|
sylan2 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 84 |
58 68 83
|
fun2d |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : ( suc 𝑚 ∪ { dom 𝑥 } ) ⟶ 𝐴 ) |
| 85 |
|
sneq |
⊢ ( dom 𝑥 = suc 𝑚 → { dom 𝑥 } = { suc 𝑚 } ) |
| 86 |
85
|
uneq2d |
⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑚 ∪ { dom 𝑥 } ) = ( suc 𝑚 ∪ { suc 𝑚 } ) ) |
| 87 |
|
df-suc |
⊢ suc suc 𝑚 = ( suc 𝑚 ∪ { suc 𝑚 } ) |
| 88 |
86 87
|
eqtr4di |
⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 89 |
69 88
|
syl |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 90 |
89
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 91 |
90
|
feq2d |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : ( suc 𝑚 ∪ { dom 𝑥 } ) ⟶ 𝐴 ↔ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 92 |
84 91
|
mpbid |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) |
| 93 |
92
|
ex |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 94 |
93
|
adantrd |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 95 |
94
|
a1d |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 96 |
95
|
ancoms |
⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 97 |
96
|
3adant1 |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 98 |
97
|
3imp |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) |
| 99 |
|
ffun |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → Fun 𝑥 ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun 𝑥 ) |
| 101 |
59 60
|
funsn |
⊢ Fun { 〈 dom 𝑥 , 𝑧 〉 } |
| 102 |
100 101
|
jctir |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( Fun 𝑥 ∧ Fun { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 103 |
60
|
dmsnop |
⊢ dom { 〈 dom 𝑥 , 𝑧 〉 } = { dom 𝑥 } |
| 104 |
103
|
ineq2i |
⊢ ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∩ { dom 𝑥 } ) |
| 105 |
|
disjsn |
⊢ ( ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ↔ ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 106 |
76 105
|
sylibr |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ) |
| 107 |
104 106
|
eqtrid |
⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) |
| 108 |
69 107
|
sylan2 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) |
| 109 |
|
funun |
⊢ ( ( ( Fun 𝑥 ∧ Fun { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 110 |
102 108 109
|
syl2anc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 111 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 112 |
111
|
a1i |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 113 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
| 114 |
|
0elsuc |
⊢ ( Ord 𝑚 → ∅ ∈ suc 𝑚 ) |
| 115 |
113 114
|
syl |
⊢ ( 𝑚 ∈ ω → ∅ ∈ suc 𝑚 ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∅ ∈ suc 𝑚 ) |
| 117 |
69
|
eleq2d |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚 ) ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚 ) ) |
| 119 |
116 118
|
mpbird |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∅ ∈ dom 𝑥 ) |
| 120 |
|
funssfv |
⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ ∅ ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = ( 𝑥 ‘ ∅ ) ) |
| 121 |
110 112 119 120
|
syl3anc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = ( 𝑥 ‘ ∅ ) ) |
| 122 |
121
|
eqeq1d |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 123 |
122
|
ancoms |
⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 124 |
123
|
3adant1 |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 125 |
124
|
biimpar |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 126 |
125
|
adantrl |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 127 |
126
|
3adant2 |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 128 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) |
| 129 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 : suc 𝑚 ⟶ 𝐴 |
| 130 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ ω |
| 131 |
128 129 130
|
nf3an |
⊢ Ⅎ 𝑘 ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) |
| 132 |
|
nfv |
⊢ Ⅎ 𝑘 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) |
| 133 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) |
| 134 |
131 132 133
|
nf3an |
⊢ Ⅎ 𝑘 ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 135 |
|
simplr |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ suc 𝑚 ) |
| 136 |
|
elsuci |
⊢ ( 𝑘 ∈ suc 𝑚 → ( 𝑘 ∈ 𝑚 ∨ 𝑘 = 𝑚 ) ) |
| 137 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑚 → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 138 |
137
|
impcom |
⊢ ( ( 𝑘 ∈ 𝑚 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 139 |
138
|
ad2ant2lr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 140 |
139
|
3adant3 |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 141 |
110
|
adantlr |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 142 |
111
|
a1i |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 143 |
|
ordsucelsuc |
⊢ ( Ord 𝑚 → ( 𝑘 ∈ 𝑚 ↔ suc 𝑘 ∈ suc 𝑚 ) ) |
| 144 |
113 143
|
syl |
⊢ ( 𝑚 ∈ ω → ( 𝑘 ∈ 𝑚 ↔ suc 𝑘 ∈ suc 𝑚 ) ) |
| 145 |
144
|
biimpa |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) → suc 𝑘 ∈ suc 𝑚 ) |
| 146 |
|
eleq2 |
⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑘 ∈ dom 𝑥 ↔ suc 𝑘 ∈ suc 𝑚 ) ) |
| 147 |
146
|
biimparc |
⊢ ( ( suc 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑘 ∈ dom 𝑥 ) |
| 148 |
145 69 147
|
syl2an |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom 𝑥 ) |
| 149 |
|
funssfv |
⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ suc 𝑘 ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) |
| 150 |
141 142 148 149
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) |
| 151 |
150
|
3adant2 |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) |
| 152 |
110
|
3adant2 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 153 |
111
|
a1i |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 154 |
|
eleq2 |
⊢ ( dom 𝑥 = suc 𝑚 → ( 𝑘 ∈ dom 𝑥 ↔ 𝑘 ∈ suc 𝑚 ) ) |
| 155 |
154
|
biimparc |
⊢ ( ( 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → 𝑘 ∈ dom 𝑥 ) |
| 156 |
69 155
|
sylan2 |
⊢ ( ( 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ dom 𝑥 ) |
| 157 |
156
|
3adant1 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ dom 𝑥 ) |
| 158 |
|
funssfv |
⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑘 ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 159 |
152 153 157 158
|
syl3anc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 160 |
159
|
3adant1r |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 161 |
160
|
fveq2d |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 162 |
151 161
|
eleq12d |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 163 |
162
|
3adant2l |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 164 |
140 163
|
mpbird |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) |
| 165 |
164
|
a1d |
⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 166 |
165
|
3expib |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 167 |
166
|
expcom |
⊢ ( 𝑘 ∈ 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 168 |
110
|
3adant1 |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 169 |
|
ssun2 |
⊢ { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 170 |
169
|
a1i |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 171 |
|
suceq |
⊢ ( 𝑘 = 𝑚 → suc 𝑘 = suc 𝑚 ) |
| 172 |
171
|
eqeq2d |
⊢ ( 𝑘 = 𝑚 → ( dom 𝑥 = suc 𝑘 ↔ dom 𝑥 = suc 𝑚 ) ) |
| 173 |
172
|
biimpar |
⊢ ( ( 𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 = suc 𝑘 ) |
| 174 |
59
|
snid |
⊢ dom 𝑥 ∈ { dom 𝑥 } |
| 175 |
174 103
|
eleqtrri |
⊢ dom 𝑥 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } |
| 176 |
173 175
|
eqeltrrdi |
⊢ ( ( 𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 177 |
69 176
|
sylan2 |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 178 |
177
|
3adant2 |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 179 |
|
funssfv |
⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) |
| 180 |
168 170 178 179
|
syl3anc |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) |
| 181 |
173
|
3adant2 |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 = suc 𝑘 ) |
| 182 |
|
fveq2 |
⊢ ( dom 𝑥 = suc 𝑘 → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ dom 𝑥 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) |
| 183 |
59 60
|
fvsn |
⊢ ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ dom 𝑥 ) = 𝑧 |
| 184 |
182 183
|
eqtr3di |
⊢ ( dom 𝑥 = suc 𝑘 → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 185 |
181 184
|
syl |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 186 |
69 185
|
syl3an3 |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 187 |
180 186
|
eqtrd |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 188 |
187
|
3expa |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 189 |
188
|
3adant2 |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 190 |
159
|
3adant1l |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 191 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 192 |
191
|
adantr |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 193 |
192
|
3ad2ant1 |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 194 |
190 193
|
eqtrd |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 195 |
194
|
fveq2d |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 196 |
189 195
|
eleq12d |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) |
| 197 |
196
|
3adant2l |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) |
| 198 |
197
|
biimprd |
⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 199 |
198
|
3expib |
⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 200 |
199
|
ex |
⊢ ( 𝑘 = 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 201 |
167 200
|
jaoi |
⊢ ( ( 𝑘 ∈ 𝑚 ∨ 𝑘 = 𝑚 ) → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 202 |
136 201
|
syl |
⊢ ( 𝑘 ∈ suc 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 203 |
202
|
com3r |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑘 ∈ suc 𝑚 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 204 |
135 203
|
mpd |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 205 |
204
|
ex |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 206 |
205
|
expcom |
⊢ ( 𝑘 ∈ suc 𝑚 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 207 |
206
|
3impd |
⊢ ( 𝑘 ∈ suc 𝑚 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 208 |
207
|
impd |
⊢ ( 𝑘 ∈ suc 𝑚 → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 209 |
208
|
com12 |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) → ( 𝑘 ∈ suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 210 |
209
|
3adant3 |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑘 ∈ suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 211 |
134 210
|
ralrimi |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) |
| 212 |
|
suceq |
⊢ ( 𝑝 = suc 𝑚 → suc 𝑝 = suc suc 𝑚 ) |
| 213 |
212
|
feq2d |
⊢ ( 𝑝 = suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ↔ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 214 |
|
raleq |
⊢ ( 𝑝 = suc 𝑚 → ( ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 215 |
213 214
|
3anbi13d |
⊢ ( 𝑝 = suc 𝑚 → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ↔ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 216 |
215
|
rspcev |
⊢ ( ( suc 𝑚 ∈ ω ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) → ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 217 |
57 98 127 211 216
|
syl13anc |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 218 |
|
snex |
⊢ { 〈 dom 𝑥 , 𝑧 〉 } ∈ V |
| 219 |
33 218
|
unex |
⊢ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ V |
| 220 |
1 2 219
|
axdc3lem3 |
⊢ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ↔ ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 221 |
217 220
|
sylibr |
⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 222 |
221
|
3coml |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 223 |
222
|
3exp |
⊢ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 224 |
223
|
expd |
⊢ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) ) |
| 225 |
54 224
|
sylcom |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) ) |
| 226 |
225
|
3impd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) |
| 227 |
226
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 228 |
227
|
com23 |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 229 |
50 228
|
mpdi |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) |
| 230 |
229
|
imp |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 231 |
|
resundir |
⊢ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) |
| 232 |
|
frel |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → Rel 𝑥 ) |
| 233 |
|
resdm |
⊢ ( Rel 𝑥 → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) |
| 234 |
232 233
|
syl |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) |
| 235 |
234
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) |
| 236 |
69 73
|
sylan2 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → dom 𝑥 ∈ ω ) |
| 237 |
74 75
|
syl |
⊢ ( dom 𝑥 ∈ ω → ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 238 |
|
incom |
⊢ ( { dom 𝑥 } ∩ dom 𝑥 ) = ( dom 𝑥 ∩ { dom 𝑥 } ) |
| 239 |
238
|
eqeq1i |
⊢ ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ) |
| 240 |
59 60
|
fnsn |
⊢ { 〈 dom 𝑥 , 𝑧 〉 } Fn { dom 𝑥 } |
| 241 |
|
fnresdisj |
⊢ ( { 〈 dom 𝑥 , 𝑧 〉 } Fn { dom 𝑥 } → ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) ) |
| 242 |
240 241
|
ax-mp |
⊢ ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 243 |
239 242 105
|
3bitr3ri |
⊢ ( ¬ dom 𝑥 ∈ dom 𝑥 ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 244 |
237 243
|
sylib |
⊢ ( dom 𝑥 ∈ ω → ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 245 |
236 244
|
syl |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 246 |
235 245
|
uneq12d |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) = ( 𝑥 ∪ ∅ ) ) |
| 247 |
|
un0 |
⊢ ( 𝑥 ∪ ∅ ) = 𝑥 |
| 248 |
246 247
|
eqtrdi |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) = 𝑥 ) |
| 249 |
231 248
|
eqtrid |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 250 |
249
|
ancoms |
⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 251 |
250
|
3adant1 |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 252 |
251
|
3ad2ant3 |
⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 253 |
252
|
adantl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 254 |
103
|
uneq2i |
⊢ ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∪ { dom 𝑥 } ) |
| 255 |
|
dmun |
⊢ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 256 |
|
df-suc |
⊢ suc dom 𝑥 = ( dom 𝑥 ∪ { dom 𝑥 } ) |
| 257 |
254 255 256
|
3eqtr4i |
⊢ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 |
| 258 |
253 257
|
jctil |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) |
| 259 |
|
dmeq |
⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → dom 𝑦 = dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 260 |
259
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( dom 𝑦 = suc dom 𝑥 ↔ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ) ) |
| 261 |
|
reseq1 |
⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( 𝑦 ↾ dom 𝑥 ) = ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) ) |
| 262 |
261
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ↔ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) |
| 263 |
260 262
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ↔ ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 264 |
263
|
rspcev |
⊢ ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ∧ ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 265 |
230 258 264
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 266 |
265
|
3exp2 |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 267 |
266
|
exlimdv |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 268 |
267
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 269 |
49 268
|
mpd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 270 |
269
|
com3r |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 271 |
35 270
|
mpan2d |
⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 272 |
271
|
com3r |
⊢ ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 273 |
272
|
3expd |
⊢ ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) ) |
| 274 |
273
|
com3r |
⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) ) |
| 275 |
274
|
3imp |
⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 276 |
275
|
com12 |
⊢ ( 𝑚 ∈ ω → ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 277 |
276
|
rexlimiv |
⊢ ( ∃ 𝑚 ∈ ω ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 278 |
34 277
|
sylbi |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 279 |
278
|
impcom |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 280 |
|
rabn0 |
⊢ ( { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 281 |
279 280
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ) |
| 282 |
29
|
rabex |
⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ V |
| 283 |
282
|
elsn |
⊢ ( { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ↔ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } = ∅ ) |
| 284 |
283
|
necon3bbii |
⊢ ( ¬ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ↔ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ) |
| 285 |
281 284
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → ¬ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ) |
| 286 |
32 285
|
eldifd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 287 |
286 3
|
fmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐺 : 𝑆 ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 288 |
29
|
axdc2 |
⊢ ( ( 𝑆 ≠ ∅ ∧ 𝐺 : 𝑆 ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 289 |
28 287 288
|
syl2an |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 290 |
1 2 3
|
axdc3lem2 |
⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 291 |
289 290
|
syl |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |