Metamath Proof Explorer


Theorem axdc3lem3

Description: Simple substitution lemma for axdc3 . (Contributed by Mario Carneiro, 27-Jan-2013)

Ref Expression
Hypotheses axdc3lem3.1 𝐴 ∈ V
axdc3lem3.2 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) }
axdc3lem3.3 𝐵 ∈ V
Assertion axdc3lem3 ( 𝐵𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 axdc3lem3.1 𝐴 ∈ V
2 axdc3lem3.2 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) }
3 axdc3lem3.3 𝐵 ∈ V
4 2 eleq2i ( 𝐵𝑆𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) } )
5 feq1 ( 𝑠 = 𝐵 → ( 𝑠 : suc 𝑛𝐴𝐵 : suc 𝑛𝐴 ) )
6 fveq1 ( 𝑠 = 𝐵 → ( 𝑠 ‘ ∅ ) = ( 𝐵 ‘ ∅ ) )
7 6 eqeq1d ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ ∅ ) = 𝐶 ↔ ( 𝐵 ‘ ∅ ) = 𝐶 ) )
8 fveq1 ( 𝑠 = 𝐵 → ( 𝑠 ‘ suc 𝑘 ) = ( 𝐵 ‘ suc 𝑘 ) )
9 fveq1 ( 𝑠 = 𝐵 → ( 𝑠𝑘 ) = ( 𝐵𝑘 ) )
10 9 fveq2d ( 𝑠 = 𝐵 → ( 𝐹 ‘ ( 𝑠𝑘 ) ) = ( 𝐹 ‘ ( 𝐵𝑘 ) ) )
11 8 10 eleq12d ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ↔ ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )
12 11 ralbidv ( 𝑠 = 𝐵 → ( ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ↔ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )
13 5 7 12 3anbi123d ( 𝑠 = 𝐵 → ( ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑛𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) ) )
14 13 rexbidv ( 𝑠 = 𝐵 → ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) ) )
15 3 14 elab ( 𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠𝑘 ) ) ) } ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )
16 suceq ( 𝑛 = 𝑚 → suc 𝑛 = suc 𝑚 )
17 16 feq2d ( 𝑛 = 𝑚 → ( 𝐵 : suc 𝑛𝐴𝐵 : suc 𝑚𝐴 ) )
18 raleq ( 𝑛 = 𝑚 → ( ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ↔ ∀ 𝑘𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )
19 17 18 3anbi13d ( 𝑛 = 𝑚 → ( ( 𝐵 : suc 𝑛𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑚𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) ) )
20 19 cbvrexvw ( ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )
21 4 15 20 3bitri ( 𝐵𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵𝑘 ) ) ) )