Metamath Proof Explorer


Theorem axdc3

Description: Dependent Choice. Axiom DC1 of Schechter p. 149, with the addition of an initial value C . This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013)

Ref Expression
Hypothesis axdc3.1 AV
Assertion axdc3 CAF:A𝒫Agg:ωAg=CkωgsuckFgk

Proof

Step Hyp Ref Expression
1 axdc3.1 AV
2 feq1 t=st:sucnAs:sucnA
3 fveq1 t=st=s
4 3 eqeq1d t=st=Cs=C
5 fveq1 t=stsucj=ssucj
6 fveq1 t=stj=sj
7 6 fveq2d t=sFtj=Fsj
8 5 7 eleq12d t=stsucjFtjssucjFsj
9 8 ralbidv t=sjntsucjFtjjnssucjFsj
10 suceq j=ksucj=suck
11 10 fveq2d j=kssucj=ssuck
12 2fveq3 j=kFsj=Fsk
13 11 12 eleq12d j=kssucjFsjssuckFsk
14 13 cbvralvw jnssucjFsjknssuckFsk
15 9 14 bitrdi t=sjntsucjFtjknssuckFsk
16 2 4 15 3anbi123d t=st:sucnAt=CjntsucjFtjs:sucnAs=CknssuckFsk
17 16 rexbidv t=snωt:sucnAt=CjntsucjFtjnωs:sucnAs=CknssuckFsk
18 17 cbvabv t|nωt:sucnAt=CjntsucjFtj=s|nωs:sucnAs=CknssuckFsk
19 eqid xt|nωt:sucnAt=CjntsucjFtjyt|nωt:sucnAt=CjntsucjFtj|domy=sucdomxydomx=x=xt|nωt:sucnAt=CjntsucjFtjyt|nωt:sucnAt=CjntsucjFtj|domy=sucdomxydomx=x
20 1 18 19 axdc3lem4 CAF:A𝒫Agg:ωAg=CkωgsuckFgk