Metamath Proof Explorer


Theorem axlowdimlem1

Description: Lemma for axlowdim . Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Assertion axlowdimlem1 ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 1 fconst6 ( ( 3 ... 𝑁 ) × { 0 } ) : ( 3 ... 𝑁 ) ⟶ ℝ