Metamath Proof Explorer


Theorem axlowdim

Description: The general lower dimension axiom. Take a dimension N greater than or equal to three. Then, there are three non-colinear points in N dimensional space that are equidistant from N - 1 distinct points. Derived from remarks inTarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013)

Ref Expression
Assertion axlowdim ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑝𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 uzuzle23 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
2 0re 0 ∈ ℝ
3 2 2 axlowdimlem5 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
4 1 3 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
5 1re 1 ∈ ℝ
6 5 2 axlowdimlem5 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
7 1 6 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
8 2 5 axlowdimlem5 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
9 1 8 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) )
10 eqid ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) )
11 10 axlowdimlem15 ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) )
12 eqid ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
13 eqid ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) = ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) )
14 eqid ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) )
15 12 13 14 2 2 axlowdimlem17 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
16 eqid ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) )
17 12 13 16 5 2 axlowdimlem17 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
18 eqid ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) )
19 12 13 18 2 5 axlowdimlem17 ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
20 1zzd ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 1 ∈ ℤ )
21 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
22 21 3ad2ant2 ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℤ )
23 2m1e1 ( 2 − 1 ) = 1
24 2re 2 ∈ ℝ
25 3re 3 ∈ ℝ
26 2lt3 2 < 3
27 24 25 26 ltleii 2 ≤ 3
28 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
29 letr ( ( 2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 2 ≤ 3 ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 ) )
30 24 25 28 29 mp3an12i ( 𝑁 ∈ ℤ → ( ( 2 ≤ 3 ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 ) )
31 27 30 mpani ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 → 2 ≤ 𝑁 ) )
32 31 imp ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 )
33 32 3adant1 ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 ≤ 𝑁 )
34 28 3ad2ant2 ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 𝑁 ∈ ℝ )
35 lesub1 ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) ≤ ( 𝑁 − 1 ) ) )
36 24 5 35 mp3an13 ( 𝑁 ∈ ℝ → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) ≤ ( 𝑁 − 1 ) ) )
37 34 36 syl ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) ≤ ( 𝑁 − 1 ) ) )
38 33 37 mpbid ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → ( 2 − 1 ) ≤ ( 𝑁 − 1 ) )
39 23 38 eqbrtrrid ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 1 ≤ ( 𝑁 − 1 ) )
40 20 22 39 3jca ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑁 − 1 ) ) )
41 eluz2 ( 𝑁 ∈ ( ℤ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) )
42 eluz2 ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 1 ≤ ( 𝑁 − 1 ) ) )
43 40 41 42 3imtr4i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 − 1 ) ∈ ( ℤ ‘ 1 ) )
44 eluzfz1 ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
45 43 44 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
46 45 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
47 eqeq1 ( 𝑘 = 1 → ( 𝑘 = 1 ↔ 1 = 1 ) )
48 oveq1 ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) )
49 48 opeq1d ( 𝑘 = 1 → ⟨ ( 𝑘 + 1 ) , 1 ⟩ = ⟨ ( 1 + 1 ) , 1 ⟩ )
50 49 sneqd ( 𝑘 = 1 → { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } = { ⟨ ( 1 + 1 ) , 1 ⟩ } )
51 48 sneqd ( 𝑘 = 1 → { ( 𝑘 + 1 ) } = { ( 1 + 1 ) } )
52 51 difeq2d ( 𝑘 = 1 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) = ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) )
53 52 xpeq1d ( 𝑘 = 1 → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) = ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) )
54 50 53 uneq12d ( 𝑘 = 1 → ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) = ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) )
55 47 54 ifbieq2d ( 𝑘 = 1 → if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) = if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) )
56 snex { ⟨ 3 , - 1 ⟩ } ∈ V
57 ovex ( 1 ... 𝑁 ) ∈ V
58 57 difexi ( ( 1 ... 𝑁 ) ∖ { 3 } ) ∈ V
59 snex { 0 } ∈ V
60 58 59 xpex ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ∈ V
61 56 60 unex ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ V
62 snex { ⟨ ( 1 + 1 ) , 1 ⟩ } ∈ V
63 57 difexi ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) ∈ V
64 63 59 xpex ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ∈ V
65 62 64 unex ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ∈ V
66 61 65 ifex if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) ∈ V
67 55 10 66 fvmpt ( 1 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) = if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) )
68 46 67 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) = if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) )
69 eqid 1 = 1
70 69 iftruei if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
71 68 70 eqtrdi ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) )
72 71 opeq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
73 2eluzge1 2 ∈ ( ℤ ‘ 1 )
74 fzss1 ( 2 ∈ ( ℤ ‘ 1 ) → ( 2 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
75 73 74 ax-mp ( 2 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) )
76 75 sseli ( 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) → 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
77 76 adantl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
78 eqeq1 ( 𝑘 = 𝑖 → ( 𝑘 = 1 ↔ 𝑖 = 1 ) )
79 oveq1 ( 𝑘 = 𝑖 → ( 𝑘 + 1 ) = ( 𝑖 + 1 ) )
80 79 opeq1d ( 𝑘 = 𝑖 → ⟨ ( 𝑘 + 1 ) , 1 ⟩ = ⟨ ( 𝑖 + 1 ) , 1 ⟩ )
81 80 sneqd ( 𝑘 = 𝑖 → { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } = { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } )
82 79 sneqd ( 𝑘 = 𝑖 → { ( 𝑘 + 1 ) } = { ( 𝑖 + 1 ) } )
83 82 difeq2d ( 𝑘 = 𝑖 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) = ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) )
84 83 xpeq1d ( 𝑘 = 𝑖 → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) = ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) )
85 81 84 uneq12d ( 𝑘 = 𝑖 → ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) = ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) )
86 78 85 ifbieq2d ( 𝑘 = 𝑖 → if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑖 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) )
87 snex { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∈ V
88 57 difexi ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) ∈ V
89 88 59 xpex ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ∈ V
90 87 89 unex ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ∈ V
91 61 90 ifex if ( 𝑖 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) ∈ V
92 86 10 91 fvmpt ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) )
93 77 92 syl ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) )
94 1lt2 1 < 2
95 5 24 ltnlei ( 1 < 2 ↔ ¬ 2 ≤ 1 )
96 94 95 mpbi ¬ 2 ≤ 1
97 96 intnanr ¬ ( 2 ≤ 1 ∧ 1 ≤ ( 𝑁 − 1 ) )
98 1z 1 ∈ ℤ
99 2z 2 ∈ ℤ
100 eluzelz ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℤ )
101 100 21 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 − 1 ) ∈ ℤ )
102 elfz ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 1 ∈ ( 2 ... ( 𝑁 − 1 ) ) ↔ ( 2 ≤ 1 ∧ 1 ≤ ( 𝑁 − 1 ) ) ) )
103 98 99 101 102 mp3an12i ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 1 ∈ ( 2 ... ( 𝑁 − 1 ) ) ↔ ( 2 ≤ 1 ∧ 1 ≤ ( 𝑁 − 1 ) ) ) )
104 97 103 mtbiri ( 𝑁 ∈ ( ℤ ‘ 3 ) → ¬ 1 ∈ ( 2 ... ( 𝑁 − 1 ) ) )
105 eleq1 ( 𝑖 = 1 → ( 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ↔ 1 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) )
106 105 notbid ( 𝑖 = 1 → ( ¬ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ↔ ¬ 1 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) )
107 104 106 syl5ibrcom ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑖 = 1 → ¬ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) )
108 107 con2d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) → ¬ 𝑖 = 1 ) )
109 108 imp ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑖 = 1 )
110 109 iffalsed ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → if ( 𝑖 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) = ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) )
111 93 110 eqtrd ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) = ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) )
112 111 opeq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
113 72 112 breq12d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
114 71 opeq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
115 111 opeq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
116 114 115 breq12d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
117 45 67 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) = if ( 1 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 1 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 1 + 1 ) } ) × { 0 } ) ) ) )
118 117 70 eqtrdi ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) )
119 118 opeq1d ( 𝑁 ∈ ( ℤ ‘ 3 ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
120 119 adantr ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
121 111 opeq1d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
122 120 121 breq12d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
123 113 116 122 3anbi123d ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ↔ ( ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( { ⟨ ( 𝑖 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
124 15 17 19 123 mpbir3and ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
125 124 ralrimiva ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
126 14 16 18 axlowdimlem6 ( 𝑁 ∈ ( ℤ ‘ 2 ) → ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
127 1 126 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
128 opeq2 ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
129 opeq2 ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
130 128 129 breq12d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
131 130 3anbi1d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
132 131 ralbidv ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
133 breq1 ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ) )
134 opeq2 ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ 𝑧 , 𝑥 ⟩ = ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
135 134 breq2d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ↔ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
136 opeq1 ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ )
137 136 breq2d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) )
138 133 135 137 3orbi123d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ) )
139 138 notbid ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ) )
140 132 139 3anbi23d ( 𝑥 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ) ) )
141 opeq2 ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
142 opeq2 ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
143 141 142 breq12d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
144 143 3anbi2d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
145 144 ralbidv ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
146 opeq1 ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ 𝑦 , 𝑧 ⟩ = ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ )
147 146 breq2d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ) )
148 breq1 ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
149 opeq2 ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ = ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
150 149 breq2d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ↔ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
151 147 148 150 3orbi123d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ↔ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
152 151 notbid ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ↔ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
153 145 152 3anbi23d ( 𝑦 = ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑦 ⟩ ) ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) ) )
154 opeq2 ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
155 opeq2 ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
156 154 155 breq12d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
157 156 3anbi3d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
158 157 ralbidv ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ↔ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
159 opeq2 ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ = ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
160 159 breq2d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
161 opeq1 ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ = ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ )
162 161 breq2d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
163 breq1 ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ↔ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) )
164 160 162 163 3orbi123d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ↔ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
165 164 notbid ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ↔ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) )
166 158 165 3anbi23d ( 𝑧 = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) → ( ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , 𝑧 ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ 𝑧 , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ 𝑧 Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) ) )
167 140 153 166 rspc3ev ( ( ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ∧ ¬ ( ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ∨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 1 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) Btwn ⟨ ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) , ( { ⟨ 1 , 1 ⟩ , ⟨ 2 , 0 ⟩ } ∪ ( ( 3 ... 𝑁 ) × { 0 } ) ) ⟩ ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) )
168 4 7 9 11 125 127 167 syl33anc ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) )
169 ovex ( 1 ... ( 𝑁 − 1 ) ) ∈ V
170 169 mptex ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ∈ V
171 f1eq1 ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ) )
172 fveq1 ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( 𝑝 ‘ 1 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) )
173 172 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ )
174 fveq1 ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( 𝑝𝑖 ) = ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) )
175 174 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ )
176 173 175 breq12d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ) )
177 172 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ )
178 174 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ )
179 177 178 breq12d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ) )
180 172 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ )
181 174 opeq1d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ = ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ )
182 180 181 breq12d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ↔ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) )
183 176 179 182 3anbi123d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ↔ ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
184 183 ralbidv ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ↔ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ) )
185 171 184 3anbi12d ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ) )
186 185 rexbidv ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ) )
187 186 2rexbidv ( 𝑝 = ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) → ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) ) )
188 170 187 spcev ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑘 = 1 , ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { ⟨ ( 𝑘 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ‘ 𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) → ∃ 𝑝𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) )
189 168 188 syl ( 𝑁 ∈ ( ℤ ‘ 3 ) → ∃ 𝑝𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ∃ 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑝 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 2 ... ( 𝑁 − 1 ) ) ( ⟨ ( 𝑝 ‘ 1 ) , 𝑥 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑥 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑦 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑦 ⟩ ∧ ⟨ ( 𝑝 ‘ 1 ) , 𝑧 ⟩ Cgr ⟨ ( 𝑝𝑖 ) , 𝑧 ⟩ ) ∧ ¬ ( 𝑥 Btwn ⟨ 𝑦 , 𝑧 ⟩ ∨ 𝑦 Btwn ⟨ 𝑧 , 𝑥 ⟩ ∨ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ) ) )