| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem15.1 | ⊢ 𝐹  =  ( 𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↦  if ( 𝑖  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) | 
						
							| 3 | 2 | axlowdimlem7 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 6 |  | eqid | ⊢ ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 7 | 6 | axlowdimlem10 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 | 5 7 | sylan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 9 | 4 8 | ifcld | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑖  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  if ( 𝑖  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) ) )  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 10 | 9 1 | fmptd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  =  1  ↔  𝑗  =  1 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 13 | 12 | opeq1d | ⊢ ( 𝑖  =  𝑗  →  〈 ( 𝑖  +  1 ) ,  1 〉  =  〈 ( 𝑗  +  1 ) ,  1 〉 ) | 
						
							| 14 | 13 | sneqd | ⊢ ( 𝑖  =  𝑗  →  { 〈 ( 𝑖  +  1 ) ,  1 〉 }  =  { 〈 ( 𝑗  +  1 ) ,  1 〉 } ) | 
						
							| 15 | 12 | sneqd | ⊢ ( 𝑖  =  𝑗  →  { ( 𝑖  +  1 ) }  =  { ( 𝑗  +  1 ) } ) | 
						
							| 16 | 15 | difeq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  =  ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } ) ) | 
						
							| 17 | 16 | xpeq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } )  =  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 18 | 14 17 | uneq12d | ⊢ ( 𝑖  =  𝑗  →  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 19 | 11 18 | ifbieq2d | ⊢ ( 𝑖  =  𝑗  →  if ( 𝑖  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 20 |  | snex | ⊢ { 〈 3 ,  - 1 〉 }  ∈  V | 
						
							| 21 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 22 | 21 | difexi | ⊢ ( ( 1 ... 𝑁 )  ∖  { 3 } )  ∈  V | 
						
							| 23 |  | snex | ⊢ { 0 }  ∈  V | 
						
							| 24 | 22 23 | xpex | ⊢ ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } )  ∈  V | 
						
							| 25 | 20 24 | unex | ⊢ ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  ∈  V | 
						
							| 26 |  | snex | ⊢ { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∈  V | 
						
							| 27 | 21 | difexi | ⊢ ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ∈  V | 
						
							| 28 | 27 23 | xpex | ⊢ ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } )  ∈  V | 
						
							| 29 | 26 28 | unex | ⊢ ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  ∈  V | 
						
							| 30 | 25 29 | ifex | ⊢ if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  ∈  V | 
						
							| 31 | 19 1 30 | fvmpt | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝐹 ‘ 𝑗 )  =  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 32 |  | eqeq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  =  1  ↔  𝑘  =  1 ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 34 | 33 | opeq1d | ⊢ ( 𝑖  =  𝑘  →  〈 ( 𝑖  +  1 ) ,  1 〉  =  〈 ( 𝑘  +  1 ) ,  1 〉 ) | 
						
							| 35 | 34 | sneqd | ⊢ ( 𝑖  =  𝑘  →  { 〈 ( 𝑖  +  1 ) ,  1 〉 }  =  { 〈 ( 𝑘  +  1 ) ,  1 〉 } ) | 
						
							| 36 | 33 | sneqd | ⊢ ( 𝑖  =  𝑘  →  { ( 𝑖  +  1 ) }  =  { ( 𝑘  +  1 ) } ) | 
						
							| 37 | 36 | difeq2d | ⊢ ( 𝑖  =  𝑘  →  ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  =  ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } ) ) | 
						
							| 38 | 37 | xpeq1d | ⊢ ( 𝑖  =  𝑘  →  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } )  =  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 39 | 35 38 | uneq12d | ⊢ ( 𝑖  =  𝑘  →  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 40 | 32 39 | ifbieq2d | ⊢ ( 𝑖  =  𝑘  →  if ( 𝑖  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑖  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑖  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 41 |  | snex | ⊢ { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∈  V | 
						
							| 42 | 21 | difexi | ⊢ ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ∈  V | 
						
							| 43 | 42 23 | xpex | ⊢ ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } )  ∈  V | 
						
							| 44 | 41 43 | unex | ⊢ ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  ∈  V | 
						
							| 45 | 25 44 | ifex | ⊢ if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  ∈  V | 
						
							| 46 | 40 1 45 | fvmpt | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 47 | 31 46 | eqeqan12d | ⊢ ( ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 )  ↔  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 )  ↔  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) ) | 
						
							| 49 |  | eqtr3 | ⊢ ( ( 𝑗  =  1  ∧  𝑘  =  1 )  →  𝑗  =  𝑘 ) | 
						
							| 50 | 49 | 2a1d | ⊢ ( ( 𝑗  =  1  ∧  𝑘  =  1 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 52 | 2 51 | axlowdimlem13 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  ≠  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 53 | 52 | neneqd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ¬  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 54 | 53 | pm2.21d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 55 | 54 | adantrl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 56 | 5 55 | sylan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 57 |  | iftrue | ⊢ ( 𝑗  =  1  →  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ) | 
						
							| 58 |  | iffalse | ⊢ ( ¬  𝑘  =  1  →  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 59 | 57 58 | eqeqan12d | ⊢ ( ( 𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  ↔  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 60 | 59 | imbi1d | ⊢ ( ( 𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 )  ↔  ( ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 61 | 56 60 | imbitrrid | ⊢ ( ( 𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 62 |  | eqid | ⊢ ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 63 | 2 62 | axlowdimlem13 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  ≠  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 64 | 63 | necomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  ≠  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ) | 
						
							| 65 | 64 | neneqd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ¬  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ) | 
						
							| 66 | 65 | pm2.21d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 67 | 5 66 | sylan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 68 | 67 | adantrr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 69 |  | iffalse | ⊢ ( ¬  𝑗  =  1  →  if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 70 |  | iftrue | ⊢ ( 𝑘  =  1  →  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ) | 
						
							| 71 | 69 70 | eqeqan12d | ⊢ ( ( ¬  𝑗  =  1  ∧  𝑘  =  1 )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  ↔  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ) ) | 
						
							| 72 | 71 | imbi1d | ⊢ ( ( ¬  𝑗  =  1  ∧  𝑘  =  1 )  →  ( ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 )  ↔  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 73 | 68 72 | imbitrrid | ⊢ ( ( ¬  𝑗  =  1  ∧  𝑘  =  1 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 74 | 62 51 | axlowdimlem14 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 75 | 74 | 3expb | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 76 | 5 75 | sylan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 77 | 69 58 | eqeqan12d | ⊢ ( ( ¬  𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  ↔  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) ) ) | 
						
							| 78 | 77 | imbi1d | ⊢ ( ( ¬  𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 )  ↔  ( ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) )  =  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 79 | 76 78 | imbitrrid | ⊢ ( ( ¬  𝑗  =  1  ∧  ¬  𝑘  =  1 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 80 | 50 61 73 79 | 4cases | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( if ( 𝑗  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑗  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑗  +  1 ) } )  ×  { 0 } ) ) )  =  if ( 𝑘  =  1 ,  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) ,  ( { 〈 ( 𝑘  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝑘  +  1 ) } )  ×  { 0 } ) ) )  →  𝑗  =  𝑘 ) ) | 
						
							| 81 | 48 80 | sylbid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ∧  ( 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 )  →  𝑗  =  𝑘 ) ) | 
						
							| 82 | 81 | ralrimivva | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ∀ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 )  →  𝑗  =  𝑘 ) ) | 
						
							| 83 |  | dff13 | ⊢ ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 )  ↔  ( 𝐹 : ( 1 ... ( 𝑁  −  1 ) ) ⟶ ( 𝔼 ‘ 𝑁 )  ∧  ∀ 𝑗  ∈  ( 1 ... ( 𝑁  −  1 ) ) ∀ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 )  →  𝑗  =  𝑘 ) ) ) | 
						
							| 84 | 10 82 83 | sylanbrc | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝐹 : ( 1 ... ( 𝑁  −  1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ) |