Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem15.1 |
⊢ 𝐹 = ( 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑖 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) ) |
2 |
|
eqid |
⊢ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) |
3 |
2
|
axlowdimlem7 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
6 |
|
eqid |
⊢ ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) |
7 |
6
|
axlowdimlem10 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
4 8
|
ifcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → if ( 𝑖 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) ∈ ( 𝔼 ‘ 𝑁 ) ) |
10 |
9 1
|
fmptd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ ( 𝔼 ‘ 𝑁 ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 = 1 ↔ 𝑗 = 1 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
13 |
12
|
opeq1d |
⊢ ( 𝑖 = 𝑗 → 〈 ( 𝑖 + 1 ) , 1 〉 = 〈 ( 𝑗 + 1 ) , 1 〉 ) |
14 |
13
|
sneqd |
⊢ ( 𝑖 = 𝑗 → { 〈 ( 𝑖 + 1 ) , 1 〉 } = { 〈 ( 𝑗 + 1 ) , 1 〉 } ) |
15 |
12
|
sneqd |
⊢ ( 𝑖 = 𝑗 → { ( 𝑖 + 1 ) } = { ( 𝑗 + 1 ) } ) |
16 |
15
|
difeq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) = ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) ) |
17 |
16
|
xpeq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) = ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) |
18 |
14 17
|
uneq12d |
⊢ ( 𝑖 = 𝑗 → ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) |
19 |
11 18
|
ifbieq2d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑖 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) ) |
20 |
|
snex |
⊢ { 〈 3 , - 1 〉 } ∈ V |
21 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
22 |
21
|
difexi |
⊢ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ∈ V |
23 |
|
snex |
⊢ { 0 } ∈ V |
24 |
22 23
|
xpex |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ∈ V |
25 |
20 24
|
unex |
⊢ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ∈ V |
26 |
|
snex |
⊢ { 〈 ( 𝑗 + 1 ) , 1 〉 } ∈ V |
27 |
21
|
difexi |
⊢ ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) ∈ V |
28 |
27 23
|
xpex |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ∈ V |
29 |
26 28
|
unex |
⊢ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ∈ V |
30 |
25 29
|
ifex |
⊢ if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) ∈ V |
31 |
19 1 30
|
fvmpt |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) ) |
32 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 = 1 ↔ 𝑘 = 1 ) ) |
33 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 + 1 ) = ( 𝑘 + 1 ) ) |
34 |
33
|
opeq1d |
⊢ ( 𝑖 = 𝑘 → 〈 ( 𝑖 + 1 ) , 1 〉 = 〈 ( 𝑘 + 1 ) , 1 〉 ) |
35 |
34
|
sneqd |
⊢ ( 𝑖 = 𝑘 → { 〈 ( 𝑖 + 1 ) , 1 〉 } = { 〈 ( 𝑘 + 1 ) , 1 〉 } ) |
36 |
33
|
sneqd |
⊢ ( 𝑖 = 𝑘 → { ( 𝑖 + 1 ) } = { ( 𝑘 + 1 ) } ) |
37 |
36
|
difeq2d |
⊢ ( 𝑖 = 𝑘 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) = ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) ) |
38 |
37
|
xpeq1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) = ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) |
39 |
35 38
|
uneq12d |
⊢ ( 𝑖 = 𝑘 → ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) |
40 |
32 39
|
ifbieq2d |
⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑖 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑖 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) |
41 |
|
snex |
⊢ { 〈 ( 𝑘 + 1 ) , 1 〉 } ∈ V |
42 |
21
|
difexi |
⊢ ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) ∈ V |
43 |
42 23
|
xpex |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ∈ V |
44 |
41 43
|
unex |
⊢ ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ∈ V |
45 |
25 44
|
ifex |
⊢ if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ∈ V |
46 |
40 1 45
|
fvmpt |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) |
47 |
31 46
|
eqeqan12d |
⊢ ( ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) ) |
49 |
|
eqtr3 |
⊢ ( ( 𝑗 = 1 ∧ 𝑘 = 1 ) → 𝑗 = 𝑘 ) |
50 |
49
|
2a1d |
⊢ ( ( 𝑗 = 1 ∧ 𝑘 = 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ) ) |
51 |
|
eqid |
⊢ ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) |
52 |
2 51
|
axlowdimlem13 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ≠ ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) |
53 |
52
|
neneqd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) |
54 |
53
|
pm2.21d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
55 |
54
|
adantrl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
56 |
5 55
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
57 |
|
iftrue |
⊢ ( 𝑗 = 1 → if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ) |
58 |
|
iffalse |
⊢ ( ¬ 𝑘 = 1 → if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) |
59 |
57 58
|
eqeqan12d |
⊢ ( ( 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ↔ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) |
60 |
59
|
imbi1d |
⊢ ( ( 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ↔ ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) ) |
61 |
56 60
|
syl5ibr |
⊢ ( ( 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ) ) |
62 |
|
eqid |
⊢ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) |
63 |
2 62
|
axlowdimlem13 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ≠ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) |
64 |
63
|
necomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ≠ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ) |
65 |
64
|
neneqd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ) |
66 |
65
|
pm2.21d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
67 |
5 66
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
68 |
67
|
adantrr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
69 |
|
iffalse |
⊢ ( ¬ 𝑗 = 1 → if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) |
70 |
|
iftrue |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ) |
71 |
69 70
|
eqeqan12d |
⊢ ( ( ¬ 𝑗 = 1 ∧ 𝑘 = 1 ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ↔ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) ) ) |
72 |
71
|
imbi1d |
⊢ ( ( ¬ 𝑗 = 1 ∧ 𝑘 = 1 ) → ( ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ↔ ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) ) |
73 |
68 72
|
syl5ibr |
⊢ ( ( ¬ 𝑗 = 1 ∧ 𝑘 = 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ) ) |
74 |
62 51
|
axlowdimlem14 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
75 |
74
|
3expb |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
76 |
5 75
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) |
77 |
69 58
|
eqeqan12d |
⊢ ( ( ¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ↔ ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) ) |
78 |
77
|
imbi1d |
⊢ ( ( ¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ↔ ( ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) = ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) → 𝑗 = 𝑘 ) ) ) |
79 |
76 78
|
syl5ibr |
⊢ ( ( ¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ) ) |
80 |
50 61 73 79
|
4cases |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( if ( 𝑗 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑗 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑗 + 1 ) } ) × { 0 } ) ) ) = if ( 𝑘 = 1 , ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) , ( { 〈 ( 𝑘 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝑘 + 1 ) } ) × { 0 } ) ) ) → 𝑗 = 𝑘 ) ) |
81 |
48 80
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) → 𝑗 = 𝑘 ) ) |
82 |
81
|
ralrimivva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∀ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∀ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) → 𝑗 = 𝑘 ) ) |
83 |
|
dff13 |
⊢ ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ↔ ( 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) ⟶ ( 𝔼 ‘ 𝑁 ) ∧ ∀ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∀ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) → 𝑗 = 𝑘 ) ) ) |
84 |
10 82 83
|
sylanbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐹 : ( 1 ... ( 𝑁 − 1 ) ) –1-1→ ( 𝔼 ‘ 𝑁 ) ) |