Metamath Proof Explorer


Theorem axlowdimlem13

Description: Lemma for axlowdim . Establish that P and Q are different points. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem13.1 𝑃 = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
axlowdimlem13.2 𝑄 = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) )
Assertion axlowdimlem13 ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑃𝑄 )

Proof

Step Hyp Ref Expression
1 axlowdimlem13.1 𝑃 = ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
2 axlowdimlem13.2 𝑄 = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) )
3 2ne0 2 ≠ 0
4 3 neii ¬ 2 = 0
5 eqcom ( 2 = 0 ↔ 0 = 2 )
6 1pneg1e0 ( 1 + - 1 ) = 0
7 6 eqcomi 0 = ( 1 + - 1 )
8 df-2 2 = ( 1 + 1 )
9 7 8 eqeq12i ( 0 = 2 ↔ ( 1 + - 1 ) = ( 1 + 1 ) )
10 ax-1cn 1 ∈ ℂ
11 neg1cn - 1 ∈ ℂ
12 10 11 10 addcani ( ( 1 + - 1 ) = ( 1 + 1 ) ↔ - 1 = 1 )
13 5 9 12 3bitri ( 2 = 0 ↔ - 1 = 1 )
14 4 13 mtbi ¬ - 1 = 1
15 14 intnanr ¬ ( - 1 = 1 ∧ 0 = 0 )
16 ax-1ne0 1 ≠ 0
17 16 neii ¬ 1 = 0
18 negeq0 ( 1 ∈ ℂ → ( 1 = 0 ↔ - 1 = 0 ) )
19 10 18 ax-mp ( 1 = 0 ↔ - 1 = 0 )
20 17 19 mtbi ¬ - 1 = 0
21 20 intnanr ¬ ( - 1 = 0 ∧ 0 = 1 )
22 15 21 pm3.2ni ¬ ( ( - 1 = 1 ∧ 0 = 0 ) ∨ ( - 1 = 0 ∧ 0 = 1 ) )
23 negex - 1 ∈ V
24 c0ex 0 ∈ V
25 1ex 1 ∈ V
26 23 24 25 24 preq12b ( { - 1 , 0 } = { 1 , 0 } ↔ ( ( - 1 = 1 ∧ 0 = 0 ) ∨ ( - 1 = 0 ∧ 0 = 1 ) ) )
27 22 26 mtbir ¬ { - 1 , 0 } = { 1 , 0 }
28 3ex 3 ∈ V
29 28 rnsnop ran { ⟨ 3 , - 1 ⟩ } = { - 1 }
30 29 a1i ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran { ⟨ 3 , - 1 ⟩ } = { - 1 } )
31 elnnuz ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ ‘ 1 ) )
32 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
33 31 32 sylbi ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) )
34 df-3 3 = ( 2 + 1 )
35 1e0p1 1 = ( 0 + 1 )
36 34 35 eqeq12i ( 3 = 1 ↔ ( 2 + 1 ) = ( 0 + 1 ) )
37 2cn 2 ∈ ℂ
38 0cn 0 ∈ ℂ
39 37 38 10 addcan2i ( ( 2 + 1 ) = ( 0 + 1 ) ↔ 2 = 0 )
40 36 39 bitri ( 3 = 1 ↔ 2 = 0 )
41 40 necon3bii ( 3 ≠ 1 ↔ 2 ≠ 0 )
42 3 41 mpbir 3 ≠ 1
43 42 necomi 1 ≠ 3
44 eldifsn ( 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 1 ≠ 3 ) )
45 33 43 44 sylanblrc ( 𝑁 ∈ ℕ → 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) )
46 45 adantr ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) )
47 ne0i ( 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) → ( ( 1 ... 𝑁 ) ∖ { 3 } ) ≠ ∅ )
48 rnxp ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) ≠ ∅ → ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) = { 0 } )
49 46 47 48 3syl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) = { 0 } )
50 30 49 uneq12d ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran { ⟨ 3 , - 1 ⟩ } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { - 1 } ∪ { 0 } ) )
51 rnun ran ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( ran { ⟨ 3 , - 1 ⟩ } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) )
52 df-pr { - 1 , 0 } = ( { - 1 } ∪ { 0 } )
53 50 51 52 3eqtr4g ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = { - 1 , 0 } )
54 ovex ( 𝐼 + 1 ) ∈ V
55 54 rnsnop ran { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } = { 1 }
56 55 a1i ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } = { 1 } )
57 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
58 fzssp1 ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) )
59 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
60 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
61 60 oveq2d ( 𝑁 ∈ ℂ → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) )
62 59 61 syl ( 𝑁 ∈ ℤ → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) )
63 58 62 sseqtrid ( 𝑁 ∈ ℤ → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
64 57 63 syl ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
65 64 sselda ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) )
66 elfzelz ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℤ )
67 66 zred ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℝ )
68 id ( 𝐼 ∈ ℝ → 𝐼 ∈ ℝ )
69 ltp1 ( 𝐼 ∈ ℝ → 𝐼 < ( 𝐼 + 1 ) )
70 68 69 ltned ( 𝐼 ∈ ℝ → 𝐼 ≠ ( 𝐼 + 1 ) )
71 67 70 syl ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ≠ ( 𝐼 + 1 ) )
72 71 adantl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ≠ ( 𝐼 + 1 ) )
73 eldifsn ( 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ↔ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) )
74 65 72 73 sylanbrc ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) )
75 ne0i ( 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ≠ ∅ )
76 rnxp ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ≠ ∅ → ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) = { 0 } )
77 74 75 76 3syl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) = { 0 } )
78 56 77 uneq12d ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = ( { 1 } ∪ { 0 } ) )
79 rnun ran ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = ( ran { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) )
80 df-pr { 1 , 0 } = ( { 1 } ∪ { 0 } )
81 78 79 80 3eqtr4g ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = { 1 , 0 } )
82 53 81 eqeq12d ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ↔ { - 1 , 0 } = { 1 , 0 } ) )
83 27 82 mtbiri ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ran ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) )
84 rneq ( ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) → ran ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) )
85 83 84 nsyl ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) )
86 1 2 eqeq12i ( 𝑃 = 𝑄 ↔ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) )
87 86 necon3abii ( 𝑃𝑄 ↔ ¬ ( { ⟨ 3 , - 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { ⟨ ( 𝐼 + 1 ) , 1 ⟩ } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) )
88 85 87 sylibr ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑃𝑄 )