Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem13.1 |
⊢ 𝑃 = ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) |
2 |
|
axlowdimlem13.2 |
⊢ 𝑄 = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
3 |
|
2ne0 |
⊢ 2 ≠ 0 |
4 |
3
|
neii |
⊢ ¬ 2 = 0 |
5 |
|
eqcom |
⊢ ( 2 = 0 ↔ 0 = 2 ) |
6 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
7 |
6
|
eqcomi |
⊢ 0 = ( 1 + - 1 ) |
8 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
9 |
7 8
|
eqeq12i |
⊢ ( 0 = 2 ↔ ( 1 + - 1 ) = ( 1 + 1 ) ) |
10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
11 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
12 |
10 11 10
|
addcani |
⊢ ( ( 1 + - 1 ) = ( 1 + 1 ) ↔ - 1 = 1 ) |
13 |
5 9 12
|
3bitri |
⊢ ( 2 = 0 ↔ - 1 = 1 ) |
14 |
4 13
|
mtbi |
⊢ ¬ - 1 = 1 |
15 |
14
|
intnanr |
⊢ ¬ ( - 1 = 1 ∧ 0 = 0 ) |
16 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
17 |
16
|
neii |
⊢ ¬ 1 = 0 |
18 |
|
negeq0 |
⊢ ( 1 ∈ ℂ → ( 1 = 0 ↔ - 1 = 0 ) ) |
19 |
10 18
|
ax-mp |
⊢ ( 1 = 0 ↔ - 1 = 0 ) |
20 |
17 19
|
mtbi |
⊢ ¬ - 1 = 0 |
21 |
20
|
intnanr |
⊢ ¬ ( - 1 = 0 ∧ 0 = 1 ) |
22 |
15 21
|
pm3.2ni |
⊢ ¬ ( ( - 1 = 1 ∧ 0 = 0 ) ∨ ( - 1 = 0 ∧ 0 = 1 ) ) |
23 |
|
negex |
⊢ - 1 ∈ V |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
|
1ex |
⊢ 1 ∈ V |
26 |
23 24 25 24
|
preq12b |
⊢ ( { - 1 , 0 } = { 1 , 0 } ↔ ( ( - 1 = 1 ∧ 0 = 0 ) ∨ ( - 1 = 0 ∧ 0 = 1 ) ) ) |
27 |
22 26
|
mtbir |
⊢ ¬ { - 1 , 0 } = { 1 , 0 } |
28 |
|
3ex |
⊢ 3 ∈ V |
29 |
28
|
rnsnop |
⊢ ran { 〈 3 , - 1 〉 } = { - 1 } |
30 |
29
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran { 〈 3 , - 1 〉 } = { - 1 } ) |
31 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
32 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
33 |
31 32
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 1 ... 𝑁 ) ) |
34 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
35 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
36 |
34 35
|
eqeq12i |
⊢ ( 3 = 1 ↔ ( 2 + 1 ) = ( 0 + 1 ) ) |
37 |
|
2cn |
⊢ 2 ∈ ℂ |
38 |
|
0cn |
⊢ 0 ∈ ℂ |
39 |
37 38 10
|
addcan2i |
⊢ ( ( 2 + 1 ) = ( 0 + 1 ) ↔ 2 = 0 ) |
40 |
36 39
|
bitri |
⊢ ( 3 = 1 ↔ 2 = 0 ) |
41 |
40
|
necon3bii |
⊢ ( 3 ≠ 1 ↔ 2 ≠ 0 ) |
42 |
3 41
|
mpbir |
⊢ 3 ≠ 1 |
43 |
42
|
necomi |
⊢ 1 ≠ 3 |
44 |
|
eldifsn |
⊢ ( 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ↔ ( 1 ∈ ( 1 ... 𝑁 ) ∧ 1 ≠ 3 ) ) |
45 |
33 43 44
|
sylanblrc |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) ) |
47 |
|
ne0i |
⊢ ( 1 ∈ ( ( 1 ... 𝑁 ) ∖ { 3 } ) → ( ( 1 ... 𝑁 ) ∖ { 3 } ) ≠ ∅ ) |
48 |
|
rnxp |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) ≠ ∅ → ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) = { 0 } ) |
49 |
46 47 48
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) = { 0 } ) |
50 |
30 49
|
uneq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran { 〈 3 , - 1 〉 } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { - 1 } ∪ { 0 } ) ) |
51 |
|
rnun |
⊢ ran ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( ran { 〈 3 , - 1 〉 } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) |
52 |
|
df-pr |
⊢ { - 1 , 0 } = ( { - 1 } ∪ { 0 } ) |
53 |
50 51 52
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = { - 1 , 0 } ) |
54 |
|
ovex |
⊢ ( 𝐼 + 1 ) ∈ V |
55 |
54
|
rnsnop |
⊢ ran { 〈 ( 𝐼 + 1 ) , 1 〉 } = { 1 } |
56 |
55
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran { 〈 ( 𝐼 + 1 ) , 1 〉 } = { 1 } ) |
57 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
58 |
|
fzssp1 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) |
59 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
60 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
61 |
60
|
oveq2d |
⊢ ( 𝑁 ∈ ℂ → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
62 |
59 61
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
63 |
58 62
|
sseqtrid |
⊢ ( 𝑁 ∈ ℤ → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
64 |
57 63
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
65 |
64
|
sselda |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( 1 ... 𝑁 ) ) |
66 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ∈ ℝ ) |
68 |
|
id |
⊢ ( 𝐼 ∈ ℝ → 𝐼 ∈ ℝ ) |
69 |
|
ltp1 |
⊢ ( 𝐼 ∈ ℝ → 𝐼 < ( 𝐼 + 1 ) ) |
70 |
68 69
|
ltned |
⊢ ( 𝐼 ∈ ℝ → 𝐼 ≠ ( 𝐼 + 1 ) ) |
71 |
67 70
|
syl |
⊢ ( 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ≠ ( 𝐼 + 1 ) ) |
73 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ↔ ( 𝐼 ∈ ( 1 ... 𝑁 ) ∧ 𝐼 ≠ ( 𝐼 + 1 ) ) ) |
74 |
65 72 73
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ) |
75 |
|
ne0i |
⊢ ( 𝐼 ∈ ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) → ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ≠ ∅ ) |
76 |
|
rnxp |
⊢ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) ≠ ∅ → ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) = { 0 } ) |
77 |
74 75 76
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) = { 0 } ) |
78 |
56 77
|
uneq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = ( { 1 } ∪ { 0 } ) ) |
79 |
|
rnun |
⊢ ran ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = ( ran { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ran ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) |
80 |
|
df-pr |
⊢ { 1 , 0 } = ( { 1 } ∪ { 0 } ) |
81 |
78 79 80
|
3eqtr4g |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ran ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) = { 1 , 0 } ) |
82 |
53 81
|
eqeq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ran ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ↔ { - 1 , 0 } = { 1 , 0 } ) ) |
83 |
27 82
|
mtbiri |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ran ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ) |
84 |
|
rneq |
⊢ ( ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) → ran ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ran ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ) |
85 |
83 84
|
nsyl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ¬ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ) |
86 |
1 2
|
eqeq12i |
⊢ ( 𝑃 = 𝑄 ↔ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ) |
87 |
86
|
necon3abii |
⊢ ( 𝑃 ≠ 𝑄 ↔ ¬ ( { 〈 3 , - 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { 3 } ) × { 0 } ) ) = ( { 〈 ( 𝐼 + 1 ) , 1 〉 } ∪ ( ( ( 1 ... 𝑁 ) ∖ { ( 𝐼 + 1 ) } ) × { 0 } ) ) ) |
88 |
85 87
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑃 ≠ 𝑄 ) |