| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem13.1 | ⊢ 𝑃  =  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) | 
						
							| 2 |  | axlowdimlem13.2 | ⊢ 𝑄  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 3 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 4 | 3 | neii | ⊢ ¬  2  =  0 | 
						
							| 5 |  | eqcom | ⊢ ( 2  =  0  ↔  0  =  2 ) | 
						
							| 6 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 7 | 6 | eqcomi | ⊢ 0  =  ( 1  +  - 1 ) | 
						
							| 8 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 9 | 7 8 | eqeq12i | ⊢ ( 0  =  2  ↔  ( 1  +  - 1 )  =  ( 1  +  1 ) ) | 
						
							| 10 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 11 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 12 | 10 11 10 | addcani | ⊢ ( ( 1  +  - 1 )  =  ( 1  +  1 )  ↔  - 1  =  1 ) | 
						
							| 13 | 5 9 12 | 3bitri | ⊢ ( 2  =  0  ↔  - 1  =  1 ) | 
						
							| 14 | 4 13 | mtbi | ⊢ ¬  - 1  =  1 | 
						
							| 15 | 14 | intnanr | ⊢ ¬  ( - 1  =  1  ∧  0  =  0 ) | 
						
							| 16 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 17 | 16 | neii | ⊢ ¬  1  =  0 | 
						
							| 18 |  | negeq0 | ⊢ ( 1  ∈  ℂ  →  ( 1  =  0  ↔  - 1  =  0 ) ) | 
						
							| 19 | 10 18 | ax-mp | ⊢ ( 1  =  0  ↔  - 1  =  0 ) | 
						
							| 20 | 17 19 | mtbi | ⊢ ¬  - 1  =  0 | 
						
							| 21 | 20 | intnanr | ⊢ ¬  ( - 1  =  0  ∧  0  =  1 ) | 
						
							| 22 | 15 21 | pm3.2ni | ⊢ ¬  ( ( - 1  =  1  ∧  0  =  0 )  ∨  ( - 1  =  0  ∧  0  =  1 ) ) | 
						
							| 23 |  | negex | ⊢ - 1  ∈  V | 
						
							| 24 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 25 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 26 | 23 24 25 24 | preq12b | ⊢ ( { - 1 ,  0 }  =  { 1 ,  0 }  ↔  ( ( - 1  =  1  ∧  0  =  0 )  ∨  ( - 1  =  0  ∧  0  =  1 ) ) ) | 
						
							| 27 | 22 26 | mtbir | ⊢ ¬  { - 1 ,  0 }  =  { 1 ,  0 } | 
						
							| 28 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 29 | 28 | rnsnop | ⊢ ran  { 〈 3 ,  - 1 〉 }  =  { - 1 } | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  { 〈 3 ,  - 1 〉 }  =  { - 1 } ) | 
						
							| 31 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 32 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 33 | 31 32 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 34 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 35 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 36 | 34 35 | eqeq12i | ⊢ ( 3  =  1  ↔  ( 2  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 37 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 38 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 39 | 37 38 10 | addcan2i | ⊢ ( ( 2  +  1 )  =  ( 0  +  1 )  ↔  2  =  0 ) | 
						
							| 40 | 36 39 | bitri | ⊢ ( 3  =  1  ↔  2  =  0 ) | 
						
							| 41 | 40 | necon3bii | ⊢ ( 3  ≠  1  ↔  2  ≠  0 ) | 
						
							| 42 | 3 41 | mpbir | ⊢ 3  ≠  1 | 
						
							| 43 | 42 | necomi | ⊢ 1  ≠  3 | 
						
							| 44 |  | eldifsn | ⊢ ( 1  ∈  ( ( 1 ... 𝑁 )  ∖  { 3 } )  ↔  ( 1  ∈  ( 1 ... 𝑁 )  ∧  1  ≠  3 ) ) | 
						
							| 45 | 33 43 44 | sylanblrc | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( ( 1 ... 𝑁 )  ∖  { 3 } ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  1  ∈  ( ( 1 ... 𝑁 )  ∖  { 3 } ) ) | 
						
							| 47 |  | ne0i | ⊢ ( 1  ∈  ( ( 1 ... 𝑁 )  ∖  { 3 } )  →  ( ( 1 ... 𝑁 )  ∖  { 3 } )  ≠  ∅ ) | 
						
							| 48 |  | rnxp | ⊢ ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ≠  ∅  →  ran  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } )  =  { 0 } ) | 
						
							| 49 | 46 47 48 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } )  =  { 0 } ) | 
						
							| 50 | 30 49 | uneq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ran  { 〈 3 ,  - 1 〉 }  ∪  ran  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { - 1 }  ∪  { 0 } ) ) | 
						
							| 51 |  | rnun | ⊢ ran  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( ran  { 〈 3 ,  - 1 〉 }  ∪  ran  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) ) | 
						
							| 52 |  | df-pr | ⊢ { - 1 ,  0 }  =  ( { - 1 }  ∪  { 0 } ) | 
						
							| 53 | 50 51 52 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  { - 1 ,  0 } ) | 
						
							| 54 |  | ovex | ⊢ ( 𝐼  +  1 )  ∈  V | 
						
							| 55 | 54 | rnsnop | ⊢ ran  { 〈 ( 𝐼  +  1 ) ,  1 〉 }  =  { 1 } | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  { 〈 ( 𝐼  +  1 ) ,  1 〉 }  =  { 1 } ) | 
						
							| 57 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 58 |  | fzssp1 | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 59 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 60 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑁  ∈  ℂ  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 62 | 59 61 | syl | ⊢ ( 𝑁  ∈  ℤ  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 63 | 58 62 | sseqtrid | ⊢ ( 𝑁  ∈  ℤ  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 64 | 57 63 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 65 | 64 | sselda | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 66 |  | elfzelz | ⊢ ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 67 | 66 | zred | ⊢ ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐼  ∈  ℝ ) | 
						
							| 68 |  | id | ⊢ ( 𝐼  ∈  ℝ  →  𝐼  ∈  ℝ ) | 
						
							| 69 |  | ltp1 | ⊢ ( 𝐼  ∈  ℝ  →  𝐼  <  ( 𝐼  +  1 ) ) | 
						
							| 70 | 68 69 | ltned | ⊢ ( 𝐼  ∈  ℝ  →  𝐼  ≠  ( 𝐼  +  1 ) ) | 
						
							| 71 | 67 70 | syl | ⊢ ( 𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝐼  ≠  ( 𝐼  +  1 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝐼  ≠  ( 𝐼  +  1 ) ) | 
						
							| 73 |  | eldifsn | ⊢ ( 𝐼  ∈  ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ↔  ( 𝐼  ∈  ( 1 ... 𝑁 )  ∧  𝐼  ≠  ( 𝐼  +  1 ) ) ) | 
						
							| 74 | 65 72 73 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝐼  ∈  ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } ) ) | 
						
							| 75 |  | ne0i | ⊢ ( 𝐼  ∈  ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  →  ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ≠  ∅ ) | 
						
							| 76 |  | rnxp | ⊢ ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ≠  ∅  →  ran  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } )  =  { 0 } ) | 
						
							| 77 | 74 75 76 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } )  =  { 0 } ) | 
						
							| 78 | 56 77 | uneq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ran  { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ran  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) )  =  ( { 1 }  ∪  { 0 } ) ) | 
						
							| 79 |  | rnun | ⊢ ran  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) )  =  ( ran  { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ran  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) | 
						
							| 80 |  | df-pr | ⊢ { 1 ,  0 }  =  ( { 1 }  ∪  { 0 } ) | 
						
							| 81 | 78 79 80 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ran  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) )  =  { 1 ,  0 } ) | 
						
							| 82 | 53 81 | eqeq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ( ran  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ran  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) )  ↔  { - 1 ,  0 }  =  { 1 ,  0 } ) ) | 
						
							| 83 | 27 82 | mtbiri | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ¬  ran  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ran  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 84 |  | rneq | ⊢ ( ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) )  →  ran  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ran  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 85 | 83 84 | nsyl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  ¬  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 86 | 1 2 | eqeq12i | ⊢ ( 𝑃  =  𝑄  ↔  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 87 | 86 | necon3abii | ⊢ ( 𝑃  ≠  𝑄  ↔  ¬  ( { 〈 3 ,  - 1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { 3 } )  ×  { 0 } ) )  =  ( { 〈 ( 𝐼  +  1 ) ,  1 〉 }  ∪  ( ( ( 1 ... 𝑁 )  ∖  { ( 𝐼  +  1 ) } )  ×  { 0 } ) ) ) | 
						
							| 88 | 85 87 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐼  ∈  ( 1 ... ( 𝑁  −  1 ) ) )  →  𝑃  ≠  𝑄 ) |