Metamath Proof Explorer


Theorem axlowdimlem13

Description: Lemma for axlowdim . Establish that P and Q are different points. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem13.1 P=311N3×0
axlowdimlem13.2 Q=I+111NI+1×0
Assertion axlowdimlem13 NI1N1PQ

Proof

Step Hyp Ref Expression
1 axlowdimlem13.1 P=311N3×0
2 axlowdimlem13.2 Q=I+111NI+1×0
3 2ne0 20
4 3 neii ¬2=0
5 eqcom 2=00=2
6 1pneg1e0 1+-1=0
7 6 eqcomi 0=1+-1
8 df-2 2=1+1
9 7 8 eqeq12i 0=21+-1=1+1
10 ax-1cn 1
11 neg1cn 1
12 10 11 10 addcani 1+-1=1+11=1
13 5 9 12 3bitri 2=01=1
14 4 13 mtbi ¬1=1
15 14 intnanr ¬1=10=0
16 ax-1ne0 10
17 16 neii ¬1=0
18 negeq0 11=01=0
19 10 18 ax-mp 1=01=0
20 17 19 mtbi ¬1=0
21 20 intnanr ¬1=00=1
22 15 21 pm3.2ni ¬1=10=01=00=1
23 negex 1V
24 c0ex 0V
25 1ex 1V
26 23 24 25 24 preq12b 10=101=10=01=00=1
27 22 26 mtbir ¬10=10
28 3ex 3V
29 28 rnsnop ran31=1
30 29 a1i NI1N1ran31=1
31 elnnuz NN1
32 eluzfz1 N111N
33 31 32 sylbi N11N
34 df-3 3=2+1
35 1e0p1 1=0+1
36 34 35 eqeq12i 3=12+1=0+1
37 2cn 2
38 0cn 0
39 37 38 10 addcan2i 2+1=0+12=0
40 36 39 bitri 3=12=0
41 40 necon3bii 3120
42 3 41 mpbir 31
43 42 necomi 13
44 eldifsn 11N311N13
45 33 43 44 sylanblrc N11N3
46 45 adantr NI1N111N3
47 ne0i 11N31N3
48 rnxp 1N3ran1N3×0=0
49 46 47 48 3syl NI1N1ran1N3×0=0
50 30 49 uneq12d NI1N1ran31ran1N3×0=10
51 rnun ran311N3×0=ran31ran1N3×0
52 df-pr 10=10
53 50 51 52 3eqtr4g NI1N1ran311N3×0=10
54 ovex I+1V
55 54 rnsnop ranI+11=1
56 55 a1i NI1N1ranI+11=1
57 nnz NN
58 fzssp1 1N11N-1+1
59 zcn NN
60 npcan1 NN-1+1=N
61 60 oveq2d N1N-1+1=1N
62 59 61 syl N1N-1+1=1N
63 58 62 sseqtrid N1N11N
64 57 63 syl N1N11N
65 64 sselda NI1N1I1N
66 elfzelz I1N1I
67 66 zred I1N1I
68 id II
69 ltp1 II<I+1
70 68 69 ltned III+1
71 67 70 syl I1N1II+1
72 71 adantl NI1N1II+1
73 eldifsn I1NI+1I1NII+1
74 65 72 73 sylanbrc NI1N1I1NI+1
75 ne0i I1NI+11NI+1
76 rnxp 1NI+1ran1NI+1×0=0
77 74 75 76 3syl NI1N1ran1NI+1×0=0
78 56 77 uneq12d NI1N1ranI+11ran1NI+1×0=10
79 rnun ranI+111NI+1×0=ranI+11ran1NI+1×0
80 df-pr 10=10
81 78 79 80 3eqtr4g NI1N1ranI+111NI+1×0=10
82 53 81 eqeq12d NI1N1ran311N3×0=ranI+111NI+1×010=10
83 27 82 mtbiri NI1N1¬ran311N3×0=ranI+111NI+1×0
84 rneq 311N3×0=I+111NI+1×0ran311N3×0=ranI+111NI+1×0
85 83 84 nsyl NI1N1¬311N3×0=I+111NI+1×0
86 1 2 eqeq12i P=Q311N3×0=I+111NI+1×0
87 86 necon3abii PQ¬311N3×0=I+111NI+1×0
88 85 87 sylibr NI1N1PQ