Metamath Proof Explorer


Theorem axlowdimlem13

Description: Lemma for axlowdim . Establish that P and Q are different points. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem13.1 P = 3 1 1 N 3 × 0
axlowdimlem13.2 Q = I + 1 1 1 N I + 1 × 0
Assertion axlowdimlem13 N I 1 N 1 P Q

Proof

Step Hyp Ref Expression
1 axlowdimlem13.1 P = 3 1 1 N 3 × 0
2 axlowdimlem13.2 Q = I + 1 1 1 N I + 1 × 0
3 2ne0 2 0
4 3 neii ¬ 2 = 0
5 eqcom 2 = 0 0 = 2
6 1pneg1e0 1 + -1 = 0
7 6 eqcomi 0 = 1 + -1
8 df-2 2 = 1 + 1
9 7 8 eqeq12i 0 = 2 1 + -1 = 1 + 1
10 ax-1cn 1
11 neg1cn 1
12 10 11 10 addcani 1 + -1 = 1 + 1 1 = 1
13 5 9 12 3bitri 2 = 0 1 = 1
14 4 13 mtbi ¬ 1 = 1
15 14 intnanr ¬ 1 = 1 0 = 0
16 ax-1ne0 1 0
17 16 neii ¬ 1 = 0
18 negeq0 1 1 = 0 1 = 0
19 10 18 ax-mp 1 = 0 1 = 0
20 17 19 mtbi ¬ 1 = 0
21 20 intnanr ¬ 1 = 0 0 = 1
22 15 21 pm3.2ni ¬ 1 = 1 0 = 0 1 = 0 0 = 1
23 negex 1 V
24 c0ex 0 V
25 1ex 1 V
26 23 24 25 24 preq12b 1 0 = 1 0 1 = 1 0 = 0 1 = 0 0 = 1
27 22 26 mtbir ¬ 1 0 = 1 0
28 3ex 3 V
29 28 rnsnop ran 3 1 = 1
30 29 a1i N I 1 N 1 ran 3 1 = 1
31 elnnuz N N 1
32 eluzfz1 N 1 1 1 N
33 31 32 sylbi N 1 1 N
34 df-3 3 = 2 + 1
35 1e0p1 1 = 0 + 1
36 34 35 eqeq12i 3 = 1 2 + 1 = 0 + 1
37 2cn 2
38 0cn 0
39 37 38 10 addcan2i 2 + 1 = 0 + 1 2 = 0
40 36 39 bitri 3 = 1 2 = 0
41 40 necon3bii 3 1 2 0
42 3 41 mpbir 3 1
43 42 necomi 1 3
44 eldifsn 1 1 N 3 1 1 N 1 3
45 33 43 44 sylanblrc N 1 1 N 3
46 45 adantr N I 1 N 1 1 1 N 3
47 ne0i 1 1 N 3 1 N 3
48 rnxp 1 N 3 ran 1 N 3 × 0 = 0
49 46 47 48 3syl N I 1 N 1 ran 1 N 3 × 0 = 0
50 30 49 uneq12d N I 1 N 1 ran 3 1 ran 1 N 3 × 0 = 1 0
51 rnun ran 3 1 1 N 3 × 0 = ran 3 1 ran 1 N 3 × 0
52 df-pr 1 0 = 1 0
53 50 51 52 3eqtr4g N I 1 N 1 ran 3 1 1 N 3 × 0 = 1 0
54 ovex I + 1 V
55 54 rnsnop ran I + 1 1 = 1
56 55 a1i N I 1 N 1 ran I + 1 1 = 1
57 nnz N N
58 fzssp1 1 N 1 1 N - 1 + 1
59 zcn N N
60 npcan1 N N - 1 + 1 = N
61 60 oveq2d N 1 N - 1 + 1 = 1 N
62 59 61 syl N 1 N - 1 + 1 = 1 N
63 58 62 sseqtrid N 1 N 1 1 N
64 57 63 syl N 1 N 1 1 N
65 64 sselda N I 1 N 1 I 1 N
66 elfzelz I 1 N 1 I
67 66 zred I 1 N 1 I
68 id I I
69 ltp1 I I < I + 1
70 68 69 ltned I I I + 1
71 67 70 syl I 1 N 1 I I + 1
72 71 adantl N I 1 N 1 I I + 1
73 eldifsn I 1 N I + 1 I 1 N I I + 1
74 65 72 73 sylanbrc N I 1 N 1 I 1 N I + 1
75 ne0i I 1 N I + 1 1 N I + 1
76 rnxp 1 N I + 1 ran 1 N I + 1 × 0 = 0
77 74 75 76 3syl N I 1 N 1 ran 1 N I + 1 × 0 = 0
78 56 77 uneq12d N I 1 N 1 ran I + 1 1 ran 1 N I + 1 × 0 = 1 0
79 rnun ran I + 1 1 1 N I + 1 × 0 = ran I + 1 1 ran 1 N I + 1 × 0
80 df-pr 1 0 = 1 0
81 78 79 80 3eqtr4g N I 1 N 1 ran I + 1 1 1 N I + 1 × 0 = 1 0
82 53 81 eqeq12d N I 1 N 1 ran 3 1 1 N 3 × 0 = ran I + 1 1 1 N I + 1 × 0 1 0 = 1 0
83 27 82 mtbiri N I 1 N 1 ¬ ran 3 1 1 N 3 × 0 = ran I + 1 1 1 N I + 1 × 0
84 rneq 3 1 1 N 3 × 0 = I + 1 1 1 N I + 1 × 0 ran 3 1 1 N 3 × 0 = ran I + 1 1 1 N I + 1 × 0
85 83 84 nsyl N I 1 N 1 ¬ 3 1 1 N 3 × 0 = I + 1 1 1 N I + 1 × 0
86 1 2 eqeq12i P = Q 3 1 1 N 3 × 0 = I + 1 1 1 N I + 1 × 0
87 86 necon3abii P Q ¬ 3 1 1 N 3 × 0 = I + 1 1 1 N I + 1 × 0
88 85 87 sylibr N I 1 N 1 P Q