Metamath Proof Explorer


Theorem axlowdim

Description: The general lower dimension axiom. Take a dimension N greater than or equal to three. Then, there are three non-colinear points in N dimensional space that are equidistant from N - 1 distinct points. Derived from remarks inTarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013)

Ref Expression
Assertion axlowdim N 3 p x 𝔼 N y 𝔼 N z 𝔼 N p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y

Proof

Step Hyp Ref Expression
1 uzuzle23 N 3 N 2
2 0re 0
3 2 2 axlowdimlem5 N 2 1 0 2 0 3 N × 0 𝔼 N
4 1 3 syl N 3 1 0 2 0 3 N × 0 𝔼 N
5 1re 1
6 5 2 axlowdimlem5 N 2 1 1 2 0 3 N × 0 𝔼 N
7 1 6 syl N 3 1 1 2 0 3 N × 0 𝔼 N
8 2 5 axlowdimlem5 N 2 1 0 2 1 3 N × 0 𝔼 N
9 1 8 syl N 3 1 0 2 1 3 N × 0 𝔼 N
10 eqid k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0
11 10 axlowdimlem15 N 3 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N
12 eqid 3 1 1 N 3 × 0 = 3 1 1 N 3 × 0
13 eqid i + 1 1 1 N i + 1 × 0 = i + 1 1 1 N i + 1 × 0
14 eqid 1 0 2 0 3 N × 0 = 1 0 2 0 3 N × 0
15 12 13 14 2 2 axlowdimlem17 N 3 i 2 N 1 3 1 1 N 3 × 0 1 0 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 0 3 N × 0
16 eqid 1 1 2 0 3 N × 0 = 1 1 2 0 3 N × 0
17 12 13 16 5 2 axlowdimlem17 N 3 i 2 N 1 3 1 1 N 3 × 0 1 1 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 1 2 0 3 N × 0
18 eqid 1 0 2 1 3 N × 0 = 1 0 2 1 3 N × 0
19 12 13 18 2 5 axlowdimlem17 N 3 i 2 N 1 3 1 1 N 3 × 0 1 0 2 1 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 1 3 N × 0
20 1zzd 3 N 3 N 1
21 peano2zm N N 1
22 21 3ad2ant2 3 N 3 N N 1
23 2m1e1 2 1 = 1
24 2re 2
25 3re 3
26 2lt3 2 < 3
27 24 25 26 ltleii 2 3
28 zre N N
29 letr 2 3 N 2 3 3 N 2 N
30 24 25 28 29 mp3an12i N 2 3 3 N 2 N
31 27 30 mpani N 3 N 2 N
32 31 imp N 3 N 2 N
33 32 3adant1 3 N 3 N 2 N
34 28 3ad2ant2 3 N 3 N N
35 lesub1 2 N 1 2 N 2 1 N 1
36 24 5 35 mp3an13 N 2 N 2 1 N 1
37 34 36 syl 3 N 3 N 2 N 2 1 N 1
38 33 37 mpbid 3 N 3 N 2 1 N 1
39 23 38 eqbrtrrid 3 N 3 N 1 N 1
40 20 22 39 3jca 3 N 3 N 1 N 1 1 N 1
41 eluz2 N 3 3 N 3 N
42 eluz2 N 1 1 1 N 1 1 N 1
43 40 41 42 3imtr4i N 3 N 1 1
44 eluzfz1 N 1 1 1 1 N 1
45 43 44 syl N 3 1 1 N 1
46 45 adantr N 3 i 2 N 1 1 1 N 1
47 eqeq1 k = 1 k = 1 1 = 1
48 oveq1 k = 1 k + 1 = 1 + 1
49 48 opeq1d k = 1 k + 1 1 = 1 + 1 1
50 49 sneqd k = 1 k + 1 1 = 1 + 1 1
51 48 sneqd k = 1 k + 1 = 1 + 1
52 51 difeq2d k = 1 1 N k + 1 = 1 N 1 + 1
53 52 xpeq1d k = 1 1 N k + 1 × 0 = 1 N 1 + 1 × 0
54 50 53 uneq12d k = 1 k + 1 1 1 N k + 1 × 0 = 1 + 1 1 1 N 1 + 1 × 0
55 47 54 ifbieq2d k = 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 = if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0
56 snex 3 1 V
57 ovex 1 N V
58 57 difexi 1 N 3 V
59 snex 0 V
60 58 59 xpex 1 N 3 × 0 V
61 56 60 unex 3 1 1 N 3 × 0 V
62 snex 1 + 1 1 V
63 57 difexi 1 N 1 + 1 V
64 63 59 xpex 1 N 1 + 1 × 0 V
65 62 64 unex 1 + 1 1 1 N 1 + 1 × 0 V
66 61 65 ifex if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0 V
67 55 10 66 fvmpt 1 1 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 = if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0
68 46 67 syl N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 = if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0
69 eqid 1 = 1
70 69 iftruei if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0 = 3 1 1 N 3 × 0
71 68 70 eqtrdi N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 = 3 1 1 N 3 × 0
72 71 opeq1d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 = 3 1 1 N 3 × 0 1 0 2 0 3 N × 0
73 2eluzge1 2 1
74 fzss1 2 1 2 N 1 1 N 1
75 73 74 ax-mp 2 N 1 1 N 1
76 75 sseli i 2 N 1 i 1 N 1
77 76 adantl N 3 i 2 N 1 i 1 N 1
78 eqeq1 k = i k = 1 i = 1
79 oveq1 k = i k + 1 = i + 1
80 79 opeq1d k = i k + 1 1 = i + 1 1
81 80 sneqd k = i k + 1 1 = i + 1 1
82 79 sneqd k = i k + 1 = i + 1
83 82 difeq2d k = i 1 N k + 1 = 1 N i + 1
84 83 xpeq1d k = i 1 N k + 1 × 0 = 1 N i + 1 × 0
85 81 84 uneq12d k = i k + 1 1 1 N k + 1 × 0 = i + 1 1 1 N i + 1 × 0
86 78 85 ifbieq2d k = i if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 = if i = 1 3 1 1 N 3 × 0 i + 1 1 1 N i + 1 × 0
87 snex i + 1 1 V
88 57 difexi 1 N i + 1 V
89 88 59 xpex 1 N i + 1 × 0 V
90 87 89 unex i + 1 1 1 N i + 1 × 0 V
91 61 90 ifex if i = 1 3 1 1 N 3 × 0 i + 1 1 1 N i + 1 × 0 V
92 86 10 91 fvmpt i 1 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i = if i = 1 3 1 1 N 3 × 0 i + 1 1 1 N i + 1 × 0
93 77 92 syl N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i = if i = 1 3 1 1 N 3 × 0 i + 1 1 1 N i + 1 × 0
94 1lt2 1 < 2
95 5 24 ltnlei 1 < 2 ¬ 2 1
96 94 95 mpbi ¬ 2 1
97 96 intnanr ¬ 2 1 1 N 1
98 1z 1
99 2z 2
100 eluzelz N 3 N
101 100 21 syl N 3 N 1
102 elfz 1 2 N 1 1 2 N 1 2 1 1 N 1
103 98 99 101 102 mp3an12i N 3 1 2 N 1 2 1 1 N 1
104 97 103 mtbiri N 3 ¬ 1 2 N 1
105 eleq1 i = 1 i 2 N 1 1 2 N 1
106 105 notbid i = 1 ¬ i 2 N 1 ¬ 1 2 N 1
107 104 106 syl5ibrcom N 3 i = 1 ¬ i 2 N 1
108 107 con2d N 3 i 2 N 1 ¬ i = 1
109 108 imp N 3 i 2 N 1 ¬ i = 1
110 109 iffalsed N 3 i 2 N 1 if i = 1 3 1 1 N 3 × 0 i + 1 1 1 N i + 1 × 0 = i + 1 1 1 N i + 1 × 0
111 93 110 eqtrd N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i = i + 1 1 1 N i + 1 × 0
112 111 opeq1d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 = i + 1 1 1 N i + 1 × 0 1 0 2 0 3 N × 0
113 72 112 breq12d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 3 1 1 N 3 × 0 1 0 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 0 3 N × 0
114 71 opeq1d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 = 3 1 1 N 3 × 0 1 1 2 0 3 N × 0
115 111 opeq1d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 = i + 1 1 1 N i + 1 × 0 1 1 2 0 3 N × 0
116 114 115 breq12d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 3 1 1 N 3 × 0 1 1 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 1 2 0 3 N × 0
117 45 67 syl N 3 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 = if 1 = 1 3 1 1 N 3 × 0 1 + 1 1 1 N 1 + 1 × 0
118 117 70 eqtrdi N 3 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 = 3 1 1 N 3 × 0
119 118 opeq1d N 3 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 = 3 1 1 N 3 × 0 1 0 2 1 3 N × 0
120 119 adantr N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 = 3 1 1 N 3 × 0 1 0 2 1 3 N × 0
121 111 opeq1d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0 = i + 1 1 1 N i + 1 × 0 1 0 2 1 3 N × 0
122 120 121 breq12d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0 3 1 1 N 3 × 0 1 0 2 1 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 1 3 N × 0
123 113 116 122 3anbi123d N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0 3 1 1 N 3 × 0 1 0 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 0 3 N × 0 3 1 1 N 3 × 0 1 1 2 0 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 1 2 0 3 N × 0 3 1 1 N 3 × 0 1 0 2 1 3 N × 0 Cgr i + 1 1 1 N i + 1 × 0 1 0 2 1 3 N × 0
124 15 17 19 123 mpbir3and N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
125 124 ralrimiva N 3 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
126 14 16 18 axlowdimlem6 N 2 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
127 1 126 syl N 3 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
128 opeq2 x = 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0
129 opeq2 x = 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0
130 128 129 breq12d x = 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0
131 130 3anbi1d x = 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
132 131 ralbidv x = 1 0 2 0 3 N × 0 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
133 breq1 x = 1 0 2 0 3 N × 0 x Btwn y z 1 0 2 0 3 N × 0 Btwn y z
134 opeq2 x = 1 0 2 0 3 N × 0 z x = z 1 0 2 0 3 N × 0
135 134 breq2d x = 1 0 2 0 3 N × 0 y Btwn z x y Btwn z 1 0 2 0 3 N × 0
136 opeq1 x = 1 0 2 0 3 N × 0 x y = 1 0 2 0 3 N × 0 y
137 136 breq2d x = 1 0 2 0 3 N × 0 z Btwn x y z Btwn 1 0 2 0 3 N × 0 y
138 133 135 137 3orbi123d x = 1 0 2 0 3 N × 0 x Btwn y z y Btwn z x z Btwn x y 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
139 138 notbid x = 1 0 2 0 3 N × 0 ¬ x Btwn y z y Btwn z x z Btwn x y ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
140 132 139 3anbi23d x = 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y
141 opeq2 y = 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0
142 opeq2 y = 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0
143 141 142 breq12d y = 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0
144 143 3anbi2d y = 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
145 144 ralbidv y = 1 1 2 0 3 N × 0 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
146 opeq1 y = 1 1 2 0 3 N × 0 y z = 1 1 2 0 3 N × 0 z
147 146 breq2d y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn y z 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z
148 breq1 y = 1 1 2 0 3 N × 0 y Btwn z 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0
149 opeq2 y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 y = 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
150 149 breq2d y = 1 1 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
151 147 148 150 3orbi123d y = 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
152 151 notbid y = 1 1 2 0 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
153 145 152 3anbi23d y = 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ 1 0 2 0 3 N × 0 Btwn y z y Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
154 opeq2 z = 1 0 2 1 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0
155 opeq2 z = 1 0 2 1 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
156 154 155 breq12d z = 1 0 2 1 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
157 156 3anbi3d z = 1 0 2 1 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
158 157 ralbidv z = 1 0 2 1 3 N × 0 i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0
159 opeq2 z = 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 z = 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
160 159 breq2d z = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
161 opeq1 z = 1 0 2 1 3 N × 0 z 1 0 2 0 3 N × 0 = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
162 161 breq2d z = 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
163 breq1 z = 1 0 2 1 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
164 160 162 163 3orbi123d z = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
165 164 notbid z = 1 0 2 1 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
166 158 165 3anbi23d z = 1 0 2 1 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 z 1 1 2 0 3 N × 0 Btwn z 1 0 2 0 3 N × 0 z Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
167 140 153 166 rspc3ev 1 0 2 0 3 N × 0 𝔼 N 1 1 2 0 3 N × 0 𝔼 N 1 0 2 1 3 N × 0 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 1 2 0 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 1 2 0 3 N × 0 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 1 0 2 1 3 N × 0 Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 1 0 2 1 3 N × 0 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 x 𝔼 N y 𝔼 N z 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y
168 4 7 9 11 125 127 167 syl33anc N 3 x 𝔼 N y 𝔼 N z 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y
169 ovex 1 N 1 V
170 169 mptex k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 V
171 f1eq1 p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p : 1 N 1 1-1 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N
172 fveq1 p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1
173 172 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 x = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x
174 fveq1 p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p i = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i
175 174 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p i x = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x
176 173 175 breq12d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 x Cgr p i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x
177 172 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 y = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y
178 174 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p i y = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y
179 177 178 breq12d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 y Cgr p i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y
180 172 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 z = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z
181 174 opeq1d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p i z = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
182 180 181 breq12d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 z Cgr p i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
183 176 179 182 3anbi123d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
184 183 ralbidv p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z
185 171 184 3anbi12d p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y
186 185 rexbidv p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 z 𝔼 N p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y z 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y
187 186 2rexbidv p = k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 x 𝔼 N y 𝔼 N z 𝔼 N p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y x 𝔼 N y 𝔼 N z 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y
188 170 187 spcev x 𝔼 N y 𝔼 N z 𝔼 N k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 : 1 N 1 1-1 𝔼 N i 2 N 1 k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 x Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i x k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 y Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i y k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 1 z Cgr k 1 N 1 if k = 1 3 1 1 N 3 × 0 k + 1 1 1 N k + 1 × 0 i z ¬ x Btwn y z y Btwn z x z Btwn x y p x 𝔼 N y 𝔼 N z 𝔼 N p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y
189 168 188 syl N 3 p x 𝔼 N y 𝔼 N z 𝔼 N p : 1 N 1 1-1 𝔼 N i 2 N 1 p 1 x Cgr p i x p 1 y Cgr p i y p 1 z Cgr p i z ¬ x Btwn y z y Btwn z x z Btwn x y