Metamath Proof Explorer


Theorem axeuclidlem

Description: Lemma for axeuclid . Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013)

Ref Expression
Assertion axeuclidlem A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCix𝔼Ny𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi

Proof

Step Hyp Ref Expression
1 simp21 A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCiP01
2 simp22 A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCiQ01
3 fveere A𝔼Nk1NAk
4 3 expcom k1NA𝔼NAk
5 fveere B𝔼Nk1NBk
6 5 expcom k1NB𝔼NBk
7 4 6 anim12d k1NA𝔼NB𝔼NAkBk
8 fveere C𝔼Nk1NCk
9 8 expcom k1NC𝔼NCk
10 fveere T𝔼Nk1NTk
11 10 expcom k1NT𝔼NTk
12 9 11 anim12d k1NC𝔼NT𝔼NCkTk
13 7 12 anim12d k1NA𝔼NB𝔼NC𝔼NT𝔼NAkBkCkTk
14 13 impcom A𝔼NB𝔼NC𝔼NT𝔼Nk1NAkBkCkTk
15 unitssre 01
16 15 sseli P01P
17 16 3ad2ant1 P01Q01P0P
18 17 adantl AkBkCkTkP01Q01P0P
19 peano2rem PP1
20 18 19 syl AkBkCkTkP01Q01P0P1
21 simplll AkBkCkTkP01Q01P0Ak
22 20 21 remulcld AkBkCkTkP01Q01P0P1Ak
23 simpllr AkBkCkTkP01Q01P0Bk
24 22 23 readdcld AkBkCkTkP01Q01P0P1Ak+Bk
25 simpr3 AkBkCkTkP01Q01P0P0
26 24 18 25 redivcld AkBkCkTkP01Q01P0P1Ak+BkP
27 14 26 sylan A𝔼NB𝔼NC𝔼NT𝔼Nk1NP01Q01P0P1Ak+BkP
28 27 an32s A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+BkP
29 28 ralrimiva A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+BkP
30 eleenn A𝔼NN
31 30 ad3antrrr A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0N
32 mptelee Nk1NP1Ak+BkP𝔼Nk1NP1Ak+BkP
33 31 32 syl A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+BkP𝔼Nk1NP1Ak+BkP
34 29 33 mpbird A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+BkP𝔼N
35 34 3adant3 A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCik1NP1Ak+BkP𝔼N
36 simplrl AkBkCkTkP01Q01P0Ck
37 22 36 readdcld AkBkCkTkP01Q01P0P1Ak+Ck
38 37 18 25 redivcld AkBkCkTkP01Q01P0P1Ak+CkP
39 14 38 sylan A𝔼NB𝔼NC𝔼NT𝔼Nk1NP01Q01P0P1Ak+CkP
40 39 an32s A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+CkP
41 40 ralrimiva A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+CkP
42 mptelee Nk1NP1Ak+CkP𝔼Nk1NP1Ak+CkP
43 31 42 syl A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+CkP𝔼Nk1NP1Ak+CkP
44 41 43 mpbird A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0k1NP1Ak+CkP𝔼N
45 44 3adant3 A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCik1NP1Ak+CkP𝔼N
46 fveecn A𝔼Ni1NAi
47 46 expcom i1NA𝔼NAi
48 fveecn B𝔼Ni1NBi
49 48 expcom i1NB𝔼NBi
50 47 49 anim12d i1NA𝔼NB𝔼NAiBi
51 fveecn C𝔼Ni1NCi
52 51 expcom i1NC𝔼NCi
53 fveecn T𝔼Ni1NTi
54 53 expcom i1NT𝔼NTi
55 52 54 anim12d i1NC𝔼NT𝔼NCiTi
56 50 55 anim12d i1NA𝔼NB𝔼NC𝔼NT𝔼NAiBiCiTi
57 56 impcom A𝔼NB𝔼NC𝔼NT𝔼Ni1NAiBiCiTi
58 eqcom Ti=1QP1Ai+QP1Ai+1QBi+QCiP1QP1Ai+QP1Ai+1QBi+QCiP=Ti
59 ax-1cn 1
60 simpr2 AiBiCiTiP01Q01P0Q01
61 15 sseli Q01Q
62 61 recnd Q01Q
63 60 62 syl AiBiCiTiP01Q01P0Q
64 subcl 1Q1Q
65 59 63 64 sylancr AiBiCiTiP01Q01P01Q
66 simpr1 AiBiCiTiP01Q01P0P01
67 16 recnd P01P
68 66 67 syl AiBiCiTiP01Q01P0P
69 subcl P1P1
70 68 59 69 sylancl AiBiCiTiP01Q01P0P1
71 simplll AiBiCiTiP01Q01P0Ai
72 70 71 mulcld AiBiCiTiP01Q01P0P1Ai
73 65 72 mulcld AiBiCiTiP01Q01P01QP1Ai
74 63 72 mulcld AiBiCiTiP01Q01P0QP1Ai
75 73 74 addcld AiBiCiTiP01Q01P01QP1Ai+QP1Ai
76 simpllr AiBiCiTiP01Q01P0Bi
77 65 76 mulcld AiBiCiTiP01Q01P01QBi
78 simplrl AiBiCiTiP01Q01P0Ci
79 63 78 mulcld AiBiCiTiP01Q01P0QCi
80 77 79 addcld AiBiCiTiP01Q01P01QBi+QCi
81 75 80 addcld AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCi
82 simplrr AiBiCiTiP01Q01P0Ti
83 simpr3 AiBiCiTiP01Q01P0P0
84 81 68 82 83 divmuld AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCiP=TiPTi=1QP1Ai+QP1Ai+1QBi+QCi
85 58 84 bitrid AiBiCiTiP01Q01P0Ti=1QP1Ai+QP1Ai+1QBi+QCiPPTi=1QP1Ai+QP1Ai+1QBi+QCi
86 negsubdi2 1P1P=P1
87 59 68 86 sylancr AiBiCiTiP01Q01P01P=P1
88 87 oveq1d AiBiCiTiP01Q01P01PAi=P1Ai
89 subcl 1P1P
90 59 68 89 sylancr AiBiCiTiP01Q01P01P
91 90 71 mulneg1d AiBiCiTiP01Q01P01PAi=1PAi
92 npcan 1Q1-Q+Q=1
93 59 63 92 sylancr AiBiCiTiP01Q01P01-Q+Q=1
94 93 oveq1d AiBiCiTiP01Q01P01-Q+QP1Ai=1P1Ai
95 65 63 72 adddird AiBiCiTiP01Q01P01-Q+QP1Ai=1QP1Ai+QP1Ai
96 72 mullidd AiBiCiTiP01Q01P01P1Ai=P1Ai
97 94 95 96 3eqtr3rd AiBiCiTiP01Q01P0P1Ai=1QP1Ai+QP1Ai
98 88 91 97 3eqtr3d AiBiCiTiP01Q01P01PAi=1QP1Ai+QP1Ai
99 98 oveq2d AiBiCiTiP01Q01P01QBi+QCi+1PAi=1QBi+QCi+1QP1Ai+QP1Ai
100 90 71 mulcld AiBiCiTiP01Q01P01PAi
101 80 100 negsubd AiBiCiTiP01Q01P01QBi+QCi+1PAi=1QBi+QCi-1PAi
102 80 75 addcomd AiBiCiTiP01Q01P01QBi+QCi+1QP1Ai+QP1Ai=1QP1Ai+QP1Ai+1QBi+QCi
103 99 101 102 3eqtr3d AiBiCiTiP01Q01P01QBi+QCi-1PAi=1QP1Ai+QP1Ai+1QBi+QCi
104 103 eqeq1d AiBiCiTiP01Q01P01QBi+QCi-1PAi=PTi1QP1Ai+QP1Ai+1QBi+QCi=PTi
105 eqcom 1QP1Ai+QP1Ai+1QBi+QCi=PTiPTi=1QP1Ai+QP1Ai+1QBi+QCi
106 104 105 bitrdi AiBiCiTiP01Q01P01QBi+QCi-1PAi=PTiPTi=1QP1Ai+QP1Ai+1QBi+QCi
107 85 106 bitr4d AiBiCiTiP01Q01P0Ti=1QP1Ai+QP1Ai+1QBi+QCiP1QBi+QCi-1PAi=PTi
108 73 74 77 79 add4d AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCi=1QP1Ai+1QBi+QP1Ai+QCi
109 65 72 76 adddid AiBiCiTiP01Q01P01QP1Ai+Bi=1QP1Ai+1QBi
110 63 72 78 adddid AiBiCiTiP01Q01P0QP1Ai+Ci=QP1Ai+QCi
111 109 110 oveq12d AiBiCiTiP01Q01P01QP1Ai+Bi+QP1Ai+Ci=1QP1Ai+1QBi+QP1Ai+QCi
112 108 111 eqtr4d AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCi=1QP1Ai+Bi+QP1Ai+Ci
113 112 oveq1d AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCiP=1QP1Ai+Bi+QP1Ai+CiP
114 72 76 addcld AiBiCiTiP01Q01P0P1Ai+Bi
115 65 114 mulcld AiBiCiTiP01Q01P01QP1Ai+Bi
116 72 78 addcld AiBiCiTiP01Q01P0P1Ai+Ci
117 63 116 mulcld AiBiCiTiP01Q01P0QP1Ai+Ci
118 115 117 68 83 divdird AiBiCiTiP01Q01P01QP1Ai+Bi+QP1Ai+CiP=1QP1Ai+BiP+QP1Ai+CiP
119 65 114 68 83 divassd AiBiCiTiP01Q01P01QP1Ai+BiP=1QP1Ai+BiP
120 63 116 68 83 divassd AiBiCiTiP01Q01P0QP1Ai+CiP=QP1Ai+CiP
121 119 120 oveq12d AiBiCiTiP01Q01P01QP1Ai+BiP+QP1Ai+CiP=1QP1Ai+BiP+QP1Ai+CiP
122 113 118 121 3eqtrd AiBiCiTiP01Q01P01QP1Ai+QP1Ai+1QBi+QCiP=1QP1Ai+BiP+QP1Ai+CiP
123 122 eqeq2d AiBiCiTiP01Q01P0Ti=1QP1Ai+QP1Ai+1QBi+QCiPTi=1QP1Ai+BiP+QP1Ai+CiP
124 68 82 mulcld AiBiCiTiP01Q01P0PTi
125 80 100 124 subaddd AiBiCiTiP01Q01P01QBi+QCi-1PAi=PTi1PAi+PTi=1QBi+QCi
126 107 123 125 3bitr3rd AiBiCiTiP01Q01P01PAi+PTi=1QBi+QCiTi=1QP1Ai+BiP+QP1Ai+CiP
127 126 biimpd AiBiCiTiP01Q01P01PAi+PTi=1QBi+QCiTi=1QP1Ai+BiP+QP1Ai+CiP
128 npncan2 1P1P+P-1=0
129 59 68 128 sylancr AiBiCiTiP01Q01P01P+P-1=0
130 129 oveq1d AiBiCiTiP01Q01P01P+P-1Ai=0Ai
131 90 70 71 adddird AiBiCiTiP01Q01P01P+P-1Ai=1PAi+P1Ai
132 mul02 Ai0Ai=0
133 132 ad3antrrr AiBiCiTiP01Q01P00Ai=0
134 130 131 133 3eqtr3d AiBiCiTiP01Q01P01PAi+P1Ai=0
135 134 oveq1d AiBiCiTiP01Q01P01PAi+P1Ai+Bi=0+Bi
136 100 72 76 addassd AiBiCiTiP01Q01P01PAi+P1Ai+Bi=1PAi+P1Ai+Bi
137 76 addlidd AiBiCiTiP01Q01P00+Bi=Bi
138 135 136 137 3eqtr3rd AiBiCiTiP01Q01P0Bi=1PAi+P1Ai+Bi
139 114 68 83 divcan2d AiBiCiTiP01Q01P0PP1Ai+BiP=P1Ai+Bi
140 139 oveq2d AiBiCiTiP01Q01P01PAi+PP1Ai+BiP=1PAi+P1Ai+Bi
141 138 140 eqtr4d AiBiCiTiP01Q01P0Bi=1PAi+PP1Ai+BiP
142 134 oveq1d AiBiCiTiP01Q01P01PAi+P1Ai+Ci=0+Ci
143 100 72 78 addassd AiBiCiTiP01Q01P01PAi+P1Ai+Ci=1PAi+P1Ai+Ci
144 78 addlidd AiBiCiTiP01Q01P00+Ci=Ci
145 142 143 144 3eqtr3rd AiBiCiTiP01Q01P0Ci=1PAi+P1Ai+Ci
146 116 68 83 divcan2d AiBiCiTiP01Q01P0PP1Ai+CiP=P1Ai+Ci
147 146 oveq2d AiBiCiTiP01Q01P01PAi+PP1Ai+CiP=1PAi+P1Ai+Ci
148 145 147 eqtr4d AiBiCiTiP01Q01P0Ci=1PAi+PP1Ai+CiP
149 141 148 jca AiBiCiTiP01Q01P0Bi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiP
150 127 149 jctild AiBiCiTiP01Q01P01PAi+PTi=1QBi+QCiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
151 df-3an Bi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiPBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
152 150 151 imbitrrdi AiBiCiTiP01Q01P01PAi+PTi=1QBi+QCiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
153 57 152 sylan A𝔼NB𝔼NC𝔼NT𝔼Ni1NP01Q01P01PAi+PTi=1QBi+QCiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
154 153 an32s A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
155 154 ralimdva A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCii1NBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
156 155 3impia A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCii1NBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
157 fveq1 x=k1NP1Ak+BkPxi=k1NP1Ak+BkPi
158 fveq2 k=iAk=Ai
159 158 oveq2d k=iP1Ak=P1Ai
160 fveq2 k=iBk=Bi
161 159 160 oveq12d k=iP1Ak+Bk=P1Ai+Bi
162 161 oveq1d k=iP1Ak+BkP=P1Ai+BiP
163 eqid k1NP1Ak+BkP=k1NP1Ak+BkP
164 ovex P1Ai+BiPV
165 162 163 164 fvmpt i1Nk1NP1Ak+BkPi=P1Ai+BiP
166 157 165 sylan9eq x=k1NP1Ak+BkPi1Nxi=P1Ai+BiP
167 oveq2 xi=P1Ai+BiPPxi=PP1Ai+BiP
168 167 oveq2d xi=P1Ai+BiP1PAi+Pxi=1PAi+PP1Ai+BiP
169 168 eqeq2d xi=P1Ai+BiPBi=1PAi+PxiBi=1PAi+PP1Ai+BiP
170 oveq2 xi=P1Ai+BiP1Qxi=1QP1Ai+BiP
171 170 oveq1d xi=P1Ai+BiP1Qxi+Qyi=1QP1Ai+BiP+Qyi
172 171 eqeq2d xi=P1Ai+BiPTi=1Qxi+QyiTi=1QP1Ai+BiP+Qyi
173 169 172 3anbi13d xi=P1Ai+BiPBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+QyiBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+Qyi
174 166 173 syl x=k1NP1Ak+BkPi1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+QyiBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+Qyi
175 174 ralbidva x=k1NP1Ak+BkPi1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyii1NBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+Qyi
176 fveq1 y=k1NP1Ak+CkPyi=k1NP1Ak+CkPi
177 fveq2 k=iCk=Ci
178 159 177 oveq12d k=iP1Ak+Ck=P1Ai+Ci
179 178 oveq1d k=iP1Ak+CkP=P1Ai+CiP
180 eqid k1NP1Ak+CkP=k1NP1Ak+CkP
181 ovex P1Ai+CiPV
182 179 180 181 fvmpt i1Nk1NP1Ak+CkPi=P1Ai+CiP
183 176 182 sylan9eq y=k1NP1Ak+CkPi1Nyi=P1Ai+CiP
184 oveq2 yi=P1Ai+CiPPyi=PP1Ai+CiP
185 184 oveq2d yi=P1Ai+CiP1PAi+Pyi=1PAi+PP1Ai+CiP
186 185 eqeq2d yi=P1Ai+CiPCi=1PAi+PyiCi=1PAi+PP1Ai+CiP
187 oveq2 yi=P1Ai+CiPQyi=QP1Ai+CiP
188 187 oveq2d yi=P1Ai+CiP1QP1Ai+BiP+Qyi=1QP1Ai+BiP+QP1Ai+CiP
189 188 eqeq2d yi=P1Ai+CiPTi=1QP1Ai+BiP+QyiTi=1QP1Ai+BiP+QP1Ai+CiP
190 186 189 3anbi23d yi=P1Ai+CiPBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+QyiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
191 183 190 syl y=k1NP1Ak+CkPi1NBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+QyiBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
192 191 ralbidva y=k1NP1Ak+CkPi1NBi=1PAi+PP1Ai+BiPCi=1PAi+PyiTi=1QP1Ai+BiP+Qyii1NBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiP
193 175 192 rspc2ev k1NP1Ak+BkP𝔼Nk1NP1Ak+CkP𝔼Ni1NBi=1PAi+PP1Ai+BiPCi=1PAi+PP1Ai+CiPTi=1QP1Ai+BiP+QP1Ai+CiPx𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyi
194 35 45 156 193 syl3anc A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCix𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyi
195 oveq2 r=P1r=1P
196 195 oveq1d r=P1rAi=1PAi
197 oveq1 r=Prxi=Pxi
198 196 197 oveq12d r=P1rAi+rxi=1PAi+Pxi
199 198 eqeq2d r=PBi=1rAi+rxiBi=1PAi+Pxi
200 199 3anbi1d r=PBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyi
201 200 ralbidv r=Pi1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyii1NBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyi
202 201 2rexbidv r=Px𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyi
203 oveq2 s=P1s=1P
204 203 oveq1d s=P1sAi=1PAi
205 oveq1 s=Psyi=Pyi
206 204 205 oveq12d s=P1sAi+syi=1PAi+Pyi
207 206 eqeq2d s=PCi=1sAi+syiCi=1PAi+Pyi
208 207 3anbi2d s=PBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyiBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyi
209 208 ralbidv s=Pi1NBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyii1NBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyi
210 209 2rexbidv s=Px𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1sAi+syiTi=1uxi+uyix𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyi
211 oveq2 u=Q1u=1Q
212 211 oveq1d u=Q1uxi=1Qxi
213 oveq1 u=Quyi=Qyi
214 212 213 oveq12d u=Q1uxi+uyi=1Qxi+Qyi
215 214 eqeq2d u=QTi=1uxi+uyiTi=1Qxi+Qyi
216 215 3anbi3d u=QBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyiBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyi
217 216 ralbidv u=Qi1NBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyii1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyi
218 217 2rexbidv u=Qx𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1uxi+uyix𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyi
219 202 210 218 rspc3ev P01P01Q01x𝔼Ny𝔼Ni1NBi=1PAi+PxiCi=1PAi+PyiTi=1Qxi+Qyir01s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
220 1 1 2 194 219 syl31anc A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCir01s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
221 rexcom u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Nu01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
222 221 rexbii s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyis01x𝔼Nu01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
223 rexcom s01x𝔼Nu01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Ns01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
224 222 223 bitri s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Ns01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
225 224 rexbii r01s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyir01x𝔼Ns01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
226 rexcom r01x𝔼Ns01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Nr01s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
227 rexcom u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiy𝔼Nu01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
228 227 rexbii s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyis01y𝔼Nu01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
229 rexcom s01y𝔼Nu01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiy𝔼Ns01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
230 228 229 bitri s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiy𝔼Ns01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
231 230 rexbii r01s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyir01y𝔼Ns01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
232 rexcom r01y𝔼Ns01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiy𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
233 231 232 bitri r01s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyiy𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
234 233 rexbii x𝔼Nr01s01u01y𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Ny𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
235 225 226 234 3bitri r01s01u01x𝔼Ny𝔼Ni1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyix𝔼Ny𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi
236 220 235 sylib A𝔼NB𝔼NC𝔼NT𝔼NP01Q01P0i1N1PAi+PTi=1QBi+QCix𝔼Ny𝔼Nr01s01u01i1NBi=1rAi+rxiCi=1sAi+syiTi=1uxi+uyi