Step |
Hyp |
Ref |
Expression |
1 |
|
simp21 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> P e. ( 0 [,] 1 ) ) |
2 |
|
simp22 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> Q e. ( 0 [,] 1 ) ) |
3 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. RR ) |
4 |
3
|
expcom |
|- ( k e. ( 1 ... N ) -> ( A e. ( EE ` N ) -> ( A ` k ) e. RR ) ) |
5 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
6 |
5
|
expcom |
|- ( k e. ( 1 ... N ) -> ( B e. ( EE ` N ) -> ( B ` k ) e. RR ) ) |
7 |
4 6
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) ) ) |
8 |
|
fveere |
|- ( ( C e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
9 |
8
|
expcom |
|- ( k e. ( 1 ... N ) -> ( C e. ( EE ` N ) -> ( C ` k ) e. RR ) ) |
10 |
|
fveere |
|- ( ( T e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( T ` k ) e. RR ) |
11 |
10
|
expcom |
|- ( k e. ( 1 ... N ) -> ( T e. ( EE ` N ) -> ( T ` k ) e. RR ) ) |
12 |
9 11
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) |
13 |
7 12
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) ) |
14 |
13
|
impcom |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) |
15 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
16 |
15
|
sseli |
|- ( P e. ( 0 [,] 1 ) -> P e. RR ) |
17 |
16
|
3ad2ant1 |
|- ( ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) -> P e. RR ) |
18 |
17
|
adantl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. RR ) |
19 |
|
peano2rem |
|- ( P e. RR -> ( P - 1 ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P - 1 ) e. RR ) |
21 |
|
simplll |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A ` k ) e. RR ) |
22 |
20 21
|
remulcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` k ) ) e. RR ) |
23 |
|
simpllr |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` k ) e. RR ) |
24 |
22 23
|
readdcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) e. RR ) |
25 |
|
simpr3 |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P =/= 0 ) |
26 |
24 18 25
|
redivcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
27 |
14 26
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
28 |
27
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
29 |
28
|
ralrimiva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
30 |
|
eleenn |
|- ( A e. ( EE ` N ) -> N e. NN ) |
31 |
30
|
ad3antrrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> N e. NN ) |
32 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) ) |
33 |
31 32
|
syl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) ) |
34 |
29 33
|
mpbird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) ) |
35 |
34
|
3adant3 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) ) |
36 |
|
simplrl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` k ) e. RR ) |
37 |
22 36
|
readdcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) e. RR ) |
38 |
37 18 25
|
redivcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
39 |
14 38
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
40 |
39
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
41 |
40
|
ralrimiva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
42 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) ) |
43 |
31 42
|
syl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) ) |
44 |
41 43
|
mpbird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) ) |
45 |
44
|
3adant3 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) ) |
46 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
47 |
46
|
expcom |
|- ( i e. ( 1 ... N ) -> ( A e. ( EE ` N ) -> ( A ` i ) e. CC ) ) |
48 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
49 |
48
|
expcom |
|- ( i e. ( 1 ... N ) -> ( B e. ( EE ` N ) -> ( B ` i ) e. CC ) ) |
50 |
47 49
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) ) ) |
51 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
52 |
51
|
expcom |
|- ( i e. ( 1 ... N ) -> ( C e. ( EE ` N ) -> ( C ` i ) e. CC ) ) |
53 |
|
fveecn |
|- ( ( T e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
54 |
53
|
expcom |
|- ( i e. ( 1 ... N ) -> ( T e. ( EE ` N ) -> ( T ` i ) e. CC ) ) |
55 |
52 54
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) |
56 |
50 55
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) ) |
57 |
56
|
impcom |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) |
58 |
|
eqcom |
|- ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( T ` i ) ) |
59 |
|
ax-1cn |
|- 1 e. CC |
60 |
|
simpr2 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> Q e. ( 0 [,] 1 ) ) |
61 |
15
|
sseli |
|- ( Q e. ( 0 [,] 1 ) -> Q e. RR ) |
62 |
61
|
recnd |
|- ( Q e. ( 0 [,] 1 ) -> Q e. CC ) |
63 |
60 62
|
syl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> Q e. CC ) |
64 |
|
subcl |
|- ( ( 1 e. CC /\ Q e. CC ) -> ( 1 - Q ) e. CC ) |
65 |
59 63 64
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 - Q ) e. CC ) |
66 |
|
simpr1 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. ( 0 [,] 1 ) ) |
67 |
16
|
recnd |
|- ( P e. ( 0 [,] 1 ) -> P e. CC ) |
68 |
66 67
|
syl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. CC ) |
69 |
|
subcl |
|- ( ( P e. CC /\ 1 e. CC ) -> ( P - 1 ) e. CC ) |
70 |
68 59 69
|
sylancl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P - 1 ) e. CC ) |
71 |
|
simplll |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A ` i ) e. CC ) |
72 |
70 71
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` i ) ) e. CC ) |
73 |
65 72
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) e. CC ) |
74 |
63 72
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) e. CC ) |
75 |
73 74
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) e. CC ) |
76 |
|
simpllr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) e. CC ) |
77 |
65 76
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( B ` i ) ) e. CC ) |
78 |
|
simplrl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) e. CC ) |
79 |
63 78
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( C ` i ) ) e. CC ) |
80 |
77 79
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) e. CC ) |
81 |
75 80
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) e. CC ) |
82 |
|
simplrr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( T ` i ) e. CC ) |
83 |
|
simpr3 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P =/= 0 ) |
84 |
81 68 82 83
|
divmuld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( T ` i ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
85 |
58 84
|
syl5bb |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
86 |
|
negsubdi2 |
|- ( ( 1 e. CC /\ P e. CC ) -> -u ( 1 - P ) = ( P - 1 ) ) |
87 |
59 68 86
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> -u ( 1 - P ) = ( P - 1 ) ) |
88 |
87
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( -u ( 1 - P ) x. ( A ` i ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
89 |
|
subcl |
|- ( ( 1 e. CC /\ P e. CC ) -> ( 1 - P ) e. CC ) |
90 |
59 68 89
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 - P ) e. CC ) |
91 |
90 71
|
mulneg1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( -u ( 1 - P ) x. ( A ` i ) ) = -u ( ( 1 - P ) x. ( A ` i ) ) ) |
92 |
|
npcan |
|- ( ( 1 e. CC /\ Q e. CC ) -> ( ( 1 - Q ) + Q ) = 1 ) |
93 |
59 63 92
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) + Q ) = 1 ) |
94 |
93
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) + Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( 1 x. ( ( P - 1 ) x. ( A ` i ) ) ) ) |
95 |
65 63 72
|
adddird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) + Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
96 |
72
|
mulid2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
97 |
94 95 96
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` i ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
98 |
88 91 97
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> -u ( ( 1 - P ) x. ( A ` i ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
99 |
98
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + -u ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) ) |
100 |
90 71
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - P ) x. ( A ` i ) ) e. CC ) |
101 |
80 100
|
negsubd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + -u ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) ) |
102 |
80 75
|
addcomd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
103 |
99 101 102
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
104 |
103
|
eqeq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( P x. ( T ` i ) ) ) ) |
105 |
|
eqcom |
|- ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( P x. ( T ` i ) ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
106 |
104 105
|
bitrdi |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
107 |
85 106
|
bitr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) ) ) |
108 |
73 74 77 79
|
add4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) + ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) ) |
109 |
65 72 76
|
adddid |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) ) |
110 |
63 72 78
|
adddid |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) = ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) |
111 |
109 110
|
oveq12d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) + ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) ) |
112 |
108 111
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) ) |
113 |
112
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) / P ) ) |
114 |
72 76
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) e. CC ) |
115 |
65 114
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) e. CC ) |
116 |
72 78
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) e. CC ) |
117 |
63 116
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) e. CC ) |
118 |
115 117 68 83
|
divdird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) / P ) = ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) + ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) ) ) |
119 |
65 114 68 83
|
divassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) = ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
120 |
63 116 68 83
|
divassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) = ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
121 |
119 120
|
oveq12d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) + ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
122 |
113 118 121
|
3eqtrd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
123 |
122
|
eqeq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
124 |
68 82
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( T ` i ) ) e. CC ) |
125 |
80 100 124
|
subaddd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
126 |
107 123 125
|
3bitr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
127 |
126
|
biimpd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
128 |
|
npncan2 |
|- ( ( 1 e. CC /\ P e. CC ) -> ( ( 1 - P ) + ( P - 1 ) ) = 0 ) |
129 |
59 68 128
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - P ) + ( P - 1 ) ) = 0 ) |
130 |
129
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) + ( P - 1 ) ) x. ( A ` i ) ) = ( 0 x. ( A ` i ) ) ) |
131 |
90 70 71
|
adddird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) + ( P - 1 ) ) x. ( A ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) ) |
132 |
|
mul02 |
|- ( ( A ` i ) e. CC -> ( 0 x. ( A ` i ) ) = 0 ) |
133 |
132
|
ad3antrrr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 x. ( A ` i ) ) = 0 ) |
134 |
130 131 133
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) = 0 ) |
135 |
134
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( B ` i ) ) = ( 0 + ( B ` i ) ) ) |
136 |
100 72 76
|
addassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( B ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
137 |
76
|
addid2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 + ( B ` i ) ) = ( B ` i ) ) |
138 |
135 136 137
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
139 |
114 68 83
|
divcan2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) |
140 |
139
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
141 |
138 140
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) |
142 |
134
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( C ` i ) ) = ( 0 + ( C ` i ) ) ) |
143 |
100 72 78
|
addassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( C ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
144 |
78
|
addid2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 + ( C ` i ) ) = ( C ` i ) ) |
145 |
142 143 144
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
146 |
116 68 83
|
divcan2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) |
147 |
146
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
148 |
145 147
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
149 |
141 148
|
jca |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
150 |
127 149
|
jctild |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
151 |
|
df-3an |
|- ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) <-> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
152 |
150 151
|
syl6ibr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
153 |
57 152
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
154 |
153
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
155 |
154
|
ralimdva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
156 |
155
|
3impia |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
157 |
|
fveq1 |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) ` i ) ) |
158 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
159 |
158
|
oveq2d |
|- ( k = i -> ( ( P - 1 ) x. ( A ` k ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
160 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
161 |
159 160
|
oveq12d |
|- ( k = i -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) |
162 |
161
|
oveq1d |
|- ( k = i -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
163 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) |
164 |
|
ovex |
|- ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) e. _V |
165 |
162 163 164
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
166 |
157 165
|
sylan9eq |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
167 |
|
oveq2 |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( P x. ( x ` i ) ) = ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
168 |
167
|
oveq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) |
169 |
168
|
eqeq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) ) |
170 |
|
oveq2 |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( 1 - Q ) x. ( x ` i ) ) = ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
171 |
170
|
oveq1d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) |
172 |
171
|
eqeq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) |
173 |
169 172
|
3anbi13d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
174 |
166 173
|
syl |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
175 |
174
|
ralbidva |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
176 |
|
fveq1 |
|- ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) -> ( y ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) ` i ) ) |
177 |
|
fveq2 |
|- ( k = i -> ( C ` k ) = ( C ` i ) ) |
178 |
159 177
|
oveq12d |
|- ( k = i -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) |
179 |
178
|
oveq1d |
|- ( k = i -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
180 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) |
181 |
|
ovex |
|- ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) e. _V |
182 |
179 180 181
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
183 |
176 182
|
sylan9eq |
|- ( ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
184 |
|
oveq2 |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( P x. ( y ` i ) ) = ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
185 |
184
|
oveq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
186 |
185
|
eqeq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) <-> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
187 |
|
oveq2 |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( Q x. ( y ` i ) ) = ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
188 |
187
|
oveq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
189 |
188
|
eqeq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
190 |
186 189
|
3anbi23d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
191 |
183 190
|
syl |
|- ( ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
192 |
191
|
ralbidva |
|- ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
193 |
175 192
|
rspc2ev |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) /\ ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) /\ A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
194 |
35 45 156 193
|
syl3anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
195 |
|
oveq2 |
|- ( r = P -> ( 1 - r ) = ( 1 - P ) ) |
196 |
195
|
oveq1d |
|- ( r = P -> ( ( 1 - r ) x. ( A ` i ) ) = ( ( 1 - P ) x. ( A ` i ) ) ) |
197 |
|
oveq1 |
|- ( r = P -> ( r x. ( x ` i ) ) = ( P x. ( x ` i ) ) ) |
198 |
196 197
|
oveq12d |
|- ( r = P -> ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) ) |
199 |
198
|
eqeq2d |
|- ( r = P -> ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) ) ) |
200 |
199
|
3anbi1d |
|- ( r = P -> ( ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
201 |
200
|
ralbidv |
|- ( r = P -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
202 |
201
|
2rexbidv |
|- ( r = P -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
203 |
|
oveq2 |
|- ( s = P -> ( 1 - s ) = ( 1 - P ) ) |
204 |
203
|
oveq1d |
|- ( s = P -> ( ( 1 - s ) x. ( A ` i ) ) = ( ( 1 - P ) x. ( A ` i ) ) ) |
205 |
|
oveq1 |
|- ( s = P -> ( s x. ( y ` i ) ) = ( P x. ( y ` i ) ) ) |
206 |
204 205
|
oveq12d |
|- ( s = P -> ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) ) |
207 |
206
|
eqeq2d |
|- ( s = P -> ( ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) <-> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) ) ) |
208 |
207
|
3anbi2d |
|- ( s = P -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
209 |
208
|
ralbidv |
|- ( s = P -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
210 |
209
|
2rexbidv |
|- ( s = P -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
211 |
|
oveq2 |
|- ( u = Q -> ( 1 - u ) = ( 1 - Q ) ) |
212 |
211
|
oveq1d |
|- ( u = Q -> ( ( 1 - u ) x. ( x ` i ) ) = ( ( 1 - Q ) x. ( x ` i ) ) ) |
213 |
|
oveq1 |
|- ( u = Q -> ( u x. ( y ` i ) ) = ( Q x. ( y ` i ) ) ) |
214 |
212 213
|
oveq12d |
|- ( u = Q -> ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) |
215 |
214
|
eqeq2d |
|- ( u = Q -> ( ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
216 |
215
|
3anbi3d |
|- ( u = Q -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
217 |
216
|
ralbidv |
|- ( u = Q -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
218 |
217
|
2rexbidv |
|- ( u = Q -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
219 |
202 210 218
|
rspc3ev |
|- ( ( ( P e. ( 0 [,] 1 ) /\ P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) ) /\ E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
220 |
1 1 2 194 219
|
syl31anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
221 |
|
rexcom |
|- ( E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
222 |
221
|
rexbii |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. s e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
223 |
|
rexcom |
|- ( E. s e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
224 |
222 223
|
bitri |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
225 |
224
|
rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
226 |
|
rexcom |
|- ( E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
227 |
|
rexcom |
|- ( E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
228 |
227
|
rexbii |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. s e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
229 |
|
rexcom |
|- ( E. s e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
230 |
228 229
|
bitri |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
231 |
230
|
rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
232 |
|
rexcom |
|- ( E. r e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
233 |
231 232
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
234 |
233
|
rexbii |
|- ( E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
235 |
225 226 234
|
3bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
236 |
220 235
|
sylib |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |