| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp21 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> P e. ( 0 [,] 1 ) ) |
| 2 |
|
simp22 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> Q e. ( 0 [,] 1 ) ) |
| 3 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. RR ) |
| 4 |
3
|
expcom |
|- ( k e. ( 1 ... N ) -> ( A e. ( EE ` N ) -> ( A ` k ) e. RR ) ) |
| 5 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
| 6 |
5
|
expcom |
|- ( k e. ( 1 ... N ) -> ( B e. ( EE ` N ) -> ( B ` k ) e. RR ) ) |
| 7 |
4 6
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) ) ) |
| 8 |
|
fveere |
|- ( ( C e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
| 9 |
8
|
expcom |
|- ( k e. ( 1 ... N ) -> ( C e. ( EE ` N ) -> ( C ` k ) e. RR ) ) |
| 10 |
|
fveere |
|- ( ( T e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( T ` k ) e. RR ) |
| 11 |
10
|
expcom |
|- ( k e. ( 1 ... N ) -> ( T e. ( EE ` N ) -> ( T ` k ) e. RR ) ) |
| 12 |
9 11
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) |
| 13 |
7 12
|
anim12d |
|- ( k e. ( 1 ... N ) -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) ) |
| 14 |
13
|
impcom |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) ) |
| 15 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 16 |
15
|
sseli |
|- ( P e. ( 0 [,] 1 ) -> P e. RR ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) -> P e. RR ) |
| 18 |
17
|
adantl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. RR ) |
| 19 |
|
peano2rem |
|- ( P e. RR -> ( P - 1 ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P - 1 ) e. RR ) |
| 21 |
|
simplll |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A ` k ) e. RR ) |
| 22 |
20 21
|
remulcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` k ) ) e. RR ) |
| 23 |
|
simpllr |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` k ) e. RR ) |
| 24 |
22 23
|
readdcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) e. RR ) |
| 25 |
|
simpr3 |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P =/= 0 ) |
| 26 |
24 18 25
|
redivcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
| 27 |
14 26
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
| 28 |
27
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
| 29 |
28
|
ralrimiva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) |
| 30 |
|
eleenn |
|- ( A e. ( EE ` N ) -> N e. NN ) |
| 31 |
30
|
ad3antrrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> N e. NN ) |
| 32 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) ) |
| 33 |
31 32
|
syl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) e. RR ) ) |
| 34 |
29 33
|
mpbird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) ) |
| 35 |
34
|
3adant3 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) ) |
| 36 |
|
simplrl |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` k ) e. RR ) |
| 37 |
22 36
|
readdcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) e. RR ) |
| 38 |
37 18 25
|
redivcld |
|- ( ( ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) /\ ( ( C ` k ) e. RR /\ ( T ` k ) e. RR ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
| 39 |
14 38
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ k e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
| 40 |
39
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
| 41 |
40
|
ralrimiva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) |
| 42 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) ) |
| 43 |
31 42
|
syl |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) e. RR ) ) |
| 44 |
41 43
|
mpbird |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) ) |
| 45 |
44
|
3adant3 |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) ) |
| 46 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 47 |
46
|
expcom |
|- ( i e. ( 1 ... N ) -> ( A e. ( EE ` N ) -> ( A ` i ) e. CC ) ) |
| 48 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 49 |
48
|
expcom |
|- ( i e. ( 1 ... N ) -> ( B e. ( EE ` N ) -> ( B ` i ) e. CC ) ) |
| 50 |
47 49
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) ) ) |
| 51 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
| 52 |
51
|
expcom |
|- ( i e. ( 1 ... N ) -> ( C e. ( EE ` N ) -> ( C ` i ) e. CC ) ) |
| 53 |
|
fveecn |
|- ( ( T e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
| 54 |
53
|
expcom |
|- ( i e. ( 1 ... N ) -> ( T e. ( EE ` N ) -> ( T ` i ) e. CC ) ) |
| 55 |
52 54
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) |
| 56 |
50 55
|
anim12d |
|- ( i e. ( 1 ... N ) -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) ) |
| 57 |
56
|
impcom |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) ) |
| 58 |
|
eqcom |
|- ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( T ` i ) ) |
| 59 |
|
ax-1cn |
|- 1 e. CC |
| 60 |
|
simpr2 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> Q e. ( 0 [,] 1 ) ) |
| 61 |
15
|
sseli |
|- ( Q e. ( 0 [,] 1 ) -> Q e. RR ) |
| 62 |
61
|
recnd |
|- ( Q e. ( 0 [,] 1 ) -> Q e. CC ) |
| 63 |
60 62
|
syl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> Q e. CC ) |
| 64 |
|
subcl |
|- ( ( 1 e. CC /\ Q e. CC ) -> ( 1 - Q ) e. CC ) |
| 65 |
59 63 64
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 - Q ) e. CC ) |
| 66 |
|
simpr1 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. ( 0 [,] 1 ) ) |
| 67 |
16
|
recnd |
|- ( P e. ( 0 [,] 1 ) -> P e. CC ) |
| 68 |
66 67
|
syl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P e. CC ) |
| 69 |
|
subcl |
|- ( ( P e. CC /\ 1 e. CC ) -> ( P - 1 ) e. CC ) |
| 70 |
68 59 69
|
sylancl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P - 1 ) e. CC ) |
| 71 |
|
simplll |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A ` i ) e. CC ) |
| 72 |
70 71
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` i ) ) e. CC ) |
| 73 |
65 72
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) e. CC ) |
| 74 |
63 72
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) e. CC ) |
| 75 |
73 74
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) e. CC ) |
| 76 |
|
simpllr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) e. CC ) |
| 77 |
65 76
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( B ` i ) ) e. CC ) |
| 78 |
|
simplrl |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) e. CC ) |
| 79 |
63 78
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( C ` i ) ) e. CC ) |
| 80 |
77 79
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) e. CC ) |
| 81 |
75 80
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) e. CC ) |
| 82 |
|
simplrr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( T ` i ) e. CC ) |
| 83 |
|
simpr3 |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> P =/= 0 ) |
| 84 |
81 68 82 83
|
divmuld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( T ` i ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
| 85 |
58 84
|
bitrid |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
| 86 |
|
negsubdi2 |
|- ( ( 1 e. CC /\ P e. CC ) -> -u ( 1 - P ) = ( P - 1 ) ) |
| 87 |
59 68 86
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> -u ( 1 - P ) = ( P - 1 ) ) |
| 88 |
87
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( -u ( 1 - P ) x. ( A ` i ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
| 89 |
|
subcl |
|- ( ( 1 e. CC /\ P e. CC ) -> ( 1 - P ) e. CC ) |
| 90 |
59 68 89
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 - P ) e. CC ) |
| 91 |
90 71
|
mulneg1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( -u ( 1 - P ) x. ( A ` i ) ) = -u ( ( 1 - P ) x. ( A ` i ) ) ) |
| 92 |
|
npcan |
|- ( ( 1 e. CC /\ Q e. CC ) -> ( ( 1 - Q ) + Q ) = 1 ) |
| 93 |
59 63 92
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) + Q ) = 1 ) |
| 94 |
93
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) + Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( 1 x. ( ( P - 1 ) x. ( A ` i ) ) ) ) |
| 95 |
65 63 72
|
adddird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) + Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
| 96 |
72
|
mullidd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 1 x. ( ( P - 1 ) x. ( A ` i ) ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
| 97 |
94 95 96
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( P - 1 ) x. ( A ` i ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
| 98 |
88 91 97
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> -u ( ( 1 - P ) x. ( A ` i ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) |
| 99 |
98
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + -u ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) ) |
| 100 |
90 71
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - P ) x. ( A ` i ) ) e. CC ) |
| 101 |
80 100
|
negsubd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + -u ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) ) |
| 102 |
80 75
|
addcomd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) + ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 103 |
99 101 102
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 104 |
103
|
eqeq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( P x. ( T ` i ) ) ) ) |
| 105 |
|
eqcom |
|- ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( P x. ( T ` i ) ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 106 |
104 105
|
bitrdi |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( P x. ( T ` i ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) ) |
| 107 |
85 106
|
bitr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) ) ) |
| 108 |
73 74 77 79
|
add4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) + ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 109 |
65 72 76
|
adddid |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) ) |
| 110 |
63 72 78
|
adddid |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) = ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) |
| 111 |
109 110
|
oveq12d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) = ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( ( 1 - Q ) x. ( B ` i ) ) ) + ( ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 112 |
108 111
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) = ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) ) |
| 113 |
112
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) / P ) ) |
| 114 |
72 76
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) e. CC ) |
| 115 |
65 114
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) e. CC ) |
| 116 |
72 78
|
addcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) e. CC ) |
| 117 |
63 116
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) e. CC ) |
| 118 |
115 117 68 83
|
divdird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) + ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) / P ) = ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) + ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) ) ) |
| 119 |
65 114 68 83
|
divassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) = ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
| 120 |
63 116 68 83
|
divassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) = ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
| 121 |
119 120
|
oveq12d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - Q ) x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) / P ) + ( ( Q x. ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) / P ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
| 122 |
113 118 121
|
3eqtrd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
| 123 |
122
|
eqeq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( T ` i ) = ( ( ( ( ( 1 - Q ) x. ( ( P - 1 ) x. ( A ` i ) ) ) + ( Q x. ( ( P - 1 ) x. ( A ` i ) ) ) ) + ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) / P ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 124 |
68 82
|
mulcld |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( T ` i ) ) e. CC ) |
| 125 |
80 100 124
|
subaddd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) - ( ( 1 - P ) x. ( A ` i ) ) ) = ( P x. ( T ` i ) ) <-> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) ) |
| 126 |
107 123 125
|
3bitr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 127 |
126
|
biimpd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 128 |
|
npncan2 |
|- ( ( 1 e. CC /\ P e. CC ) -> ( ( 1 - P ) + ( P - 1 ) ) = 0 ) |
| 129 |
59 68 128
|
sylancr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( 1 - P ) + ( P - 1 ) ) = 0 ) |
| 130 |
129
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) + ( P - 1 ) ) x. ( A ` i ) ) = ( 0 x. ( A ` i ) ) ) |
| 131 |
90 70 71
|
adddird |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) + ( P - 1 ) ) x. ( A ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) ) |
| 132 |
|
mul02 |
|- ( ( A ` i ) e. CC -> ( 0 x. ( A ` i ) ) = 0 ) |
| 133 |
132
|
ad3antrrr |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 x. ( A ` i ) ) = 0 ) |
| 134 |
130 131 133
|
3eqtr3d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) = 0 ) |
| 135 |
134
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( B ` i ) ) = ( 0 + ( B ` i ) ) ) |
| 136 |
100 72 76
|
addassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( B ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
| 137 |
76
|
addlidd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 + ( B ` i ) ) = ( B ` i ) ) |
| 138 |
135 136 137
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
| 139 |
114 68 83
|
divcan2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) |
| 140 |
139
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) ) |
| 141 |
138 140
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) |
| 142 |
134
|
oveq1d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( C ` i ) ) = ( 0 + ( C ` i ) ) ) |
| 143 |
100 72 78
|
addassd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( P - 1 ) x. ( A ` i ) ) ) + ( C ` i ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
| 144 |
78
|
addlidd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( 0 + ( C ` i ) ) = ( C ` i ) ) |
| 145 |
142 143 144
|
3eqtr3rd |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
| 146 |
116 68 83
|
divcan2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) |
| 147 |
146
|
oveq2d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) ) |
| 148 |
145 147
|
eqtr4d |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
| 149 |
141 148
|
jca |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 150 |
127 149
|
jctild |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 151 |
|
df-3an |
|- ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) <-> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 152 |
150 151
|
imbitrrdi |
|- ( ( ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) /\ ( ( C ` i ) e. CC /\ ( T ` i ) e. CC ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 153 |
57 152
|
sylan |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ i e. ( 1 ... N ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 154 |
153
|
an32s |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 155 |
154
|
ralimdva |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) -> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 156 |
155
|
3impia |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 157 |
|
fveq1 |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) ` i ) ) |
| 158 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
| 159 |
158
|
oveq2d |
|- ( k = i -> ( ( P - 1 ) x. ( A ` k ) ) = ( ( P - 1 ) x. ( A ` i ) ) ) |
| 160 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
| 161 |
159 160
|
oveq12d |
|- ( k = i -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) ) |
| 162 |
161
|
oveq1d |
|- ( k = i -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
| 163 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) |
| 164 |
|
ovex |
|- ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) e. _V |
| 165 |
162 163 164
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
| 166 |
157 165
|
sylan9eq |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) |
| 167 |
|
oveq2 |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( P x. ( x ` i ) ) = ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
| 168 |
167
|
oveq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) |
| 169 |
168
|
eqeq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) ) ) |
| 170 |
|
oveq2 |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( 1 - Q ) x. ( x ` i ) ) = ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) |
| 171 |
170
|
oveq1d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) |
| 172 |
171
|
eqeq2d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) |
| 173 |
169 172
|
3anbi13d |
|- ( ( x ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 174 |
166 173
|
syl |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 175 |
174
|
ralbidva |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 176 |
|
fveq1 |
|- ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) -> ( y ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) ` i ) ) |
| 177 |
|
fveq2 |
|- ( k = i -> ( C ` k ) = ( C ` i ) ) |
| 178 |
159 177
|
oveq12d |
|- ( k = i -> ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) = ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) ) |
| 179 |
178
|
oveq1d |
|- ( k = i -> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
| 180 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) |
| 181 |
|
ovex |
|- ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) e. _V |
| 182 |
179 180 181
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
| 183 |
176 182
|
sylan9eq |
|- ( ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) |
| 184 |
|
oveq2 |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( P x. ( y ` i ) ) = ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
| 185 |
184
|
oveq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
| 186 |
185
|
eqeq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) <-> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 187 |
|
oveq2 |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( Q x. ( y ` i ) ) = ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) |
| 188 |
187
|
oveq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) |
| 189 |
188
|
eqeq2d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) |
| 190 |
186 189
|
3anbi23d |
|- ( ( y ` i ) = ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 191 |
183 190
|
syl |
|- ( ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 192 |
191
|
ralbidva |
|- ( y = ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) ) |
| 193 |
175 192
|
rspc2ev |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( B ` k ) ) / P ) ) e. ( EE ` N ) /\ ( k e. ( 1 ... N ) |-> ( ( ( ( P - 1 ) x. ( A ` k ) ) + ( C ` k ) ) / P ) ) e. ( EE ` N ) /\ A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( B ` i ) ) / P ) ) + ( Q x. ( ( ( ( P - 1 ) x. ( A ` i ) ) + ( C ` i ) ) / P ) ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
| 194 |
35 45 156 193
|
syl3anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
| 195 |
|
oveq2 |
|- ( r = P -> ( 1 - r ) = ( 1 - P ) ) |
| 196 |
195
|
oveq1d |
|- ( r = P -> ( ( 1 - r ) x. ( A ` i ) ) = ( ( 1 - P ) x. ( A ` i ) ) ) |
| 197 |
|
oveq1 |
|- ( r = P -> ( r x. ( x ` i ) ) = ( P x. ( x ` i ) ) ) |
| 198 |
196 197
|
oveq12d |
|- ( r = P -> ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) ) |
| 199 |
198
|
eqeq2d |
|- ( r = P -> ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) ) ) |
| 200 |
199
|
3anbi1d |
|- ( r = P -> ( ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 201 |
200
|
ralbidv |
|- ( r = P -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 202 |
201
|
2rexbidv |
|- ( r = P -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 203 |
|
oveq2 |
|- ( s = P -> ( 1 - s ) = ( 1 - P ) ) |
| 204 |
203
|
oveq1d |
|- ( s = P -> ( ( 1 - s ) x. ( A ` i ) ) = ( ( 1 - P ) x. ( A ` i ) ) ) |
| 205 |
|
oveq1 |
|- ( s = P -> ( s x. ( y ` i ) ) = ( P x. ( y ` i ) ) ) |
| 206 |
204 205
|
oveq12d |
|- ( s = P -> ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) ) |
| 207 |
206
|
eqeq2d |
|- ( s = P -> ( ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) <-> ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) ) ) |
| 208 |
207
|
3anbi2d |
|- ( s = P -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 209 |
208
|
ralbidv |
|- ( s = P -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 210 |
209
|
2rexbidv |
|- ( s = P -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 211 |
|
oveq2 |
|- ( u = Q -> ( 1 - u ) = ( 1 - Q ) ) |
| 212 |
211
|
oveq1d |
|- ( u = Q -> ( ( 1 - u ) x. ( x ` i ) ) = ( ( 1 - Q ) x. ( x ` i ) ) ) |
| 213 |
|
oveq1 |
|- ( u = Q -> ( u x. ( y ` i ) ) = ( Q x. ( y ` i ) ) ) |
| 214 |
212 213
|
oveq12d |
|- ( u = Q -> ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) |
| 215 |
214
|
eqeq2d |
|- ( u = Q -> ( ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) <-> ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) |
| 216 |
215
|
3anbi3d |
|- ( u = Q -> ( ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 217 |
216
|
ralbidv |
|- ( u = Q -> ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 218 |
217
|
2rexbidv |
|- ( u = Q -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) ) |
| 219 |
202 210 218
|
rspc3ev |
|- ( ( ( P e. ( 0 [,] 1 ) /\ P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) ) /\ E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - Q ) x. ( x ` i ) ) + ( Q x. ( y ` i ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 220 |
1 1 2 194 219
|
syl31anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 221 |
|
rexcom |
|- ( E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 222 |
221
|
rexbii |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. s e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 223 |
|
rexcom |
|- ( E. s e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 224 |
222 223
|
bitri |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 225 |
224
|
rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 226 |
|
rexcom |
|- ( E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 227 |
|
rexcom |
|- ( E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 228 |
227
|
rexbii |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. s e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 229 |
|
rexcom |
|- ( E. s e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 230 |
228 229
|
bitri |
|- ( E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 231 |
230
|
rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 232 |
|
rexcom |
|- ( E. r e. ( 0 [,] 1 ) E. y e. ( EE ` N ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 233 |
231 232
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 234 |
233
|
rexbii |
|- ( E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 235 |
225 226 234
|
3bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. y e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 236 |
220 235
|
sylib |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( P e. ( 0 [,] 1 ) /\ Q e. ( 0 [,] 1 ) /\ P =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - P ) x. ( A ` i ) ) + ( P x. ( T ` i ) ) ) = ( ( ( 1 - Q ) x. ( B ` i ) ) + ( Q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |