| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> A e. ( EE ` N ) ) |
| 2 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> B e. ( EE ` N ) ) |
| 3 |
1 2
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
| 4 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> C e. ( EE ` N ) ) |
| 5 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> T e. ( EE ` N ) ) |
| 6 |
4 5
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) |
| 7 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> p e. ( 0 [,] 1 ) ) |
| 8 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> q e. ( 0 [,] 1 ) ) |
| 9 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> A e. ( EE ` N ) ) |
| 11 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 12 |
10 11
|
sylan |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 13 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> T e. ( EE ` N ) ) |
| 14 |
13
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> T e. ( EE ` N ) ) |
| 15 |
|
fveecn |
|- ( ( T e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
| 16 |
14 15
|
sylan |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
| 17 |
|
mullid |
|- ( ( A ` i ) e. CC -> ( 1 x. ( A ` i ) ) = ( A ` i ) ) |
| 18 |
|
mul02 |
|- ( ( T ` i ) e. CC -> ( 0 x. ( T ` i ) ) = 0 ) |
| 19 |
17 18
|
oveqan12d |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( ( A ` i ) + 0 ) ) |
| 20 |
|
addrid |
|- ( ( A ` i ) e. CC -> ( ( A ` i ) + 0 ) = ( A ` i ) ) |
| 21 |
20
|
adantr |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( A ` i ) + 0 ) = ( A ` i ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) |
| 23 |
12 16 22
|
syl2anc |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) |
| 24 |
|
oveq2 |
|- ( p = 0 -> ( 1 - p ) = ( 1 - 0 ) ) |
| 25 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 26 |
24 25
|
eqtrdi |
|- ( p = 0 -> ( 1 - p ) = 1 ) |
| 27 |
26
|
oveq1d |
|- ( p = 0 -> ( ( 1 - p ) x. ( A ` i ) ) = ( 1 x. ( A ` i ) ) ) |
| 28 |
|
oveq1 |
|- ( p = 0 -> ( p x. ( T ` i ) ) = ( 0 x. ( T ` i ) ) ) |
| 29 |
27 28
|
oveq12d |
|- ( p = 0 -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) ) |
| 30 |
29
|
eqeq1d |
|- ( p = 0 -> ( ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) <-> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) ) |
| 31 |
30
|
ad2antlr |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) <-> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) ) |
| 32 |
23 31
|
mpbird |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) ) |
| 33 |
32
|
eqeq2d |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) <-> ( D ` i ) = ( A ` i ) ) ) |
| 34 |
|
eqcom |
|- ( ( D ` i ) = ( A ` i ) <-> ( A ` i ) = ( D ` i ) ) |
| 35 |
33 34
|
bitrdi |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) <-> ( A ` i ) = ( D ` i ) ) ) |
| 36 |
35
|
biimpd |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) -> ( A ` i ) = ( D ` i ) ) ) |
| 37 |
36
|
adantrd |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> ( A ` i ) = ( D ` i ) ) ) |
| 38 |
37
|
ralimdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
| 39 |
38
|
impancom |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( p = 0 -> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
| 40 |
9
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> A e. ( EE ` N ) ) |
| 41 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> D e. ( EE ` N ) ) |
| 43 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( A = D <-> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
| 44 |
40 42 43
|
syl2anc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( A = D <-> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
| 45 |
39 44
|
sylibrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( p = 0 -> A = D ) ) |
| 46 |
45
|
necon3d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( A =/= D -> p =/= 0 ) ) |
| 47 |
46
|
impr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) -> p =/= 0 ) |
| 48 |
47
|
anasss |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> p =/= 0 ) |
| 49 |
|
eqtr2 |
|- ( ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
| 50 |
49
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
| 52 |
51
|
ad2antll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
| 53 |
|
axeuclidlem |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) /\ p =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 54 |
3 6 7 8 48 52 53
|
syl231anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 55 |
54
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) ) |
| 56 |
55
|
rexlimdvv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 57 |
|
brbtwn |
|- ( ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( D Btwn <. A , T >. <-> E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) ) ) |
| 58 |
41 9 13 57
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( D Btwn <. A , T >. <-> E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) ) ) |
| 59 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 60 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 61 |
|
brbtwn |
|- ( ( D e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( D Btwn <. B , C >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 62 |
41 59 60 61
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( D Btwn <. B , C >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 63 |
58 62
|
3anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) ) ) |
| 64 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 65 |
64
|
2rexbii |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 66 |
|
reeanv |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 67 |
65 66
|
bitri |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
| 68 |
67
|
anbi1i |
|- ( ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
| 69 |
|
r19.41vv |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
| 70 |
|
df-3an |
|- ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) <-> ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
| 71 |
68 69 70
|
3bitr4i |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) ) |
| 72 |
63 71
|
bitr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) <-> E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) |
| 73 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 74 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 75 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) |
| 76 |
|
brbtwn |
|- ( ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ x e. ( EE ` N ) ) -> ( B Btwn <. A , x >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) ) ) |
| 77 |
73 74 75 76
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( B Btwn <. A , x >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) ) ) |
| 78 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 79 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> y e. ( EE ` N ) ) |
| 80 |
|
brbtwn |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( C Btwn <. A , y >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) ) ) |
| 81 |
78 74 79 80
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( C Btwn <. A , y >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) ) ) |
| 82 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> T e. ( EE ` N ) ) |
| 83 |
|
brbtwn |
|- ( ( T e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( T Btwn <. x , y >. <-> E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 84 |
82 75 79 83
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( T Btwn <. x , y >. <-> E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 85 |
77 81 84
|
3anbi123d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 86 |
|
r19.26-3 |
|- ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 87 |
86
|
rexbii |
|- ( E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 88 |
87
|
2rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 89 |
|
3reeanv |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 90 |
88 89
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
| 91 |
85 90
|
bitr4di |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 92 |
91
|
2rexbidva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
| 93 |
56 72 92
|
3imtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) ) ) |