Step |
Hyp |
Ref |
Expression |
1 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> A e. ( EE ` N ) ) |
2 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> B e. ( EE ` N ) ) |
3 |
1 2
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
4 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> C e. ( EE ` N ) ) |
5 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> T e. ( EE ` N ) ) |
6 |
4 5
|
jca |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) |
7 |
|
simprll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> p e. ( 0 [,] 1 ) ) |
8 |
|
simprlr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> q e. ( 0 [,] 1 ) ) |
9 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
10 |
9
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> A e. ( EE ` N ) ) |
11 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
12 |
10 11
|
sylan |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
13 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> T e. ( EE ` N ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> T e. ( EE ` N ) ) |
15 |
|
fveecn |
|- ( ( T e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
16 |
14 15
|
sylan |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( T ` i ) e. CC ) |
17 |
|
mulid2 |
|- ( ( A ` i ) e. CC -> ( 1 x. ( A ` i ) ) = ( A ` i ) ) |
18 |
|
mul02 |
|- ( ( T ` i ) e. CC -> ( 0 x. ( T ` i ) ) = 0 ) |
19 |
17 18
|
oveqan12d |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( ( A ` i ) + 0 ) ) |
20 |
|
addid1 |
|- ( ( A ` i ) e. CC -> ( ( A ` i ) + 0 ) = ( A ` i ) ) |
21 |
20
|
adantr |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( A ` i ) + 0 ) = ( A ` i ) ) |
22 |
19 21
|
eqtrd |
|- ( ( ( A ` i ) e. CC /\ ( T ` i ) e. CC ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) |
23 |
12 16 22
|
syl2anc |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) |
24 |
|
oveq2 |
|- ( p = 0 -> ( 1 - p ) = ( 1 - 0 ) ) |
25 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
26 |
24 25
|
eqtrdi |
|- ( p = 0 -> ( 1 - p ) = 1 ) |
27 |
26
|
oveq1d |
|- ( p = 0 -> ( ( 1 - p ) x. ( A ` i ) ) = ( 1 x. ( A ` i ) ) ) |
28 |
|
oveq1 |
|- ( p = 0 -> ( p x. ( T ` i ) ) = ( 0 x. ( T ` i ) ) ) |
29 |
27 28
|
oveq12d |
|- ( p = 0 -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) ) |
30 |
29
|
eqeq1d |
|- ( p = 0 -> ( ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) <-> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) ) |
31 |
30
|
ad2antlr |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) <-> ( ( 1 x. ( A ` i ) ) + ( 0 x. ( T ` i ) ) ) = ( A ` i ) ) ) |
32 |
23 31
|
mpbird |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( A ` i ) ) |
33 |
32
|
eqeq2d |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) <-> ( D ` i ) = ( A ` i ) ) ) |
34 |
|
eqcom |
|- ( ( D ` i ) = ( A ` i ) <-> ( A ` i ) = ( D ` i ) ) |
35 |
33 34
|
bitrdi |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) <-> ( A ` i ) = ( D ` i ) ) ) |
36 |
35
|
biimpd |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) -> ( A ` i ) = ( D ` i ) ) ) |
37 |
36
|
adantrd |
|- ( ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) /\ i e. ( 1 ... N ) ) -> ( ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> ( A ` i ) = ( D ` i ) ) ) |
38 |
37
|
ralimdva |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ p = 0 ) -> ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
39 |
38
|
impancom |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( p = 0 -> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
40 |
9
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> A e. ( EE ` N ) ) |
41 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> D e. ( EE ` N ) ) |
43 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( A = D <-> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
44 |
40 42 43
|
syl2anc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( A = D <-> A. i e. ( 1 ... N ) ( A ` i ) = ( D ` i ) ) ) |
45 |
39 44
|
sylibrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( p = 0 -> A = D ) ) |
46 |
45
|
necon3d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) -> ( A =/= D -> p =/= 0 ) ) |
47 |
46
|
impr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) -> p =/= 0 ) |
48 |
47
|
anasss |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> p =/= 0 ) |
49 |
|
eqtr2 |
|- ( ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
50 |
49
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
51 |
50
|
adantr |
|- ( ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
52 |
51
|
ad2antll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) |
53 |
|
axeuclidlem |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) /\ p =/= 0 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
54 |
3 6 7 8 48 52 53
|
syl231anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
55 |
54
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( p e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) ) |
56 |
55
|
rexlimdvv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
57 |
|
brbtwn |
|- ( ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ T e. ( EE ` N ) ) -> ( D Btwn <. A , T >. <-> E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) ) ) |
58 |
41 9 13 57
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( D Btwn <. A , T >. <-> E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) ) ) |
59 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
60 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
61 |
|
brbtwn |
|- ( ( D e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( D Btwn <. B , C >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
62 |
41 59 60 61
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( D Btwn <. B , C >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
63 |
58 62
|
3anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) ) ) |
64 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
65 |
64
|
2rexbii |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
66 |
|
reeanv |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
67 |
65 66
|
bitri |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) ) |
68 |
67
|
anbi1i |
|- ( ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
69 |
|
r19.41vv |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
70 |
|
df-3an |
|- ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) <-> ( ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) |
71 |
68 69 70
|
3bitr4i |
|- ( E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) <-> ( E. p e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) /\ A =/= D ) ) |
72 |
63 71
|
bitr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) <-> E. p e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - p ) x. ( A ` i ) ) + ( p x. ( T ` i ) ) ) /\ ( D ` i ) = ( ( ( 1 - q ) x. ( B ` i ) ) + ( q x. ( C ` i ) ) ) ) /\ A =/= D ) ) ) |
73 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
74 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
75 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> x e. ( EE ` N ) ) |
76 |
|
brbtwn |
|- ( ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ x e. ( EE ` N ) ) -> ( B Btwn <. A , x >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) ) ) |
77 |
73 74 75 76
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( B Btwn <. A , x >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) ) ) |
78 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
79 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> y e. ( EE ` N ) ) |
80 |
|
brbtwn |
|- ( ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( C Btwn <. A , y >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) ) ) |
81 |
78 74 79 80
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( C Btwn <. A , y >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) ) ) |
82 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> T e. ( EE ` N ) ) |
83 |
|
brbtwn |
|- ( ( T e. ( EE ` N ) /\ x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( T Btwn <. x , y >. <-> E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
84 |
82 75 79 83
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( T Btwn <. x , y >. <-> E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
85 |
77 81 84
|
3anbi123d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
86 |
|
r19.26-3 |
|- ( A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
87 |
86
|
rexbii |
|- ( E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
88 |
87
|
2rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
89 |
|
3reeanv |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
90 |
88 89
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) |
91 |
85 90
|
bitr4di |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
92 |
91
|
2rexbidva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) E. y e. ( EE ` N ) ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) <-> E. x e. ( EE ` N ) E. y e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) E. u e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( B ` i ) = ( ( ( 1 - r ) x. ( A ` i ) ) + ( r x. ( x ` i ) ) ) /\ ( C ` i ) = ( ( ( 1 - s ) x. ( A ` i ) ) + ( s x. ( y ` i ) ) ) /\ ( T ` i ) = ( ( ( 1 - u ) x. ( x ` i ) ) + ( u x. ( y ` i ) ) ) ) ) ) |
93 |
56 72 92
|
3imtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ T e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , T >. /\ D Btwn <. B , C >. /\ A =/= D ) -> E. x e. ( EE ` N ) E. y e. ( EE ` N ) ( B Btwn <. A , x >. /\ C Btwn <. A , y >. /\ T Btwn <. x , y >. ) ) ) |