Metamath Proof Explorer


Theorem axlowdimlem6

Description: Lemma for axlowdim . Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypotheses axlowdimlem6.1 A = 1 0 2 0 3 N × 0
axlowdimlem6.2 B = 1 1 2 0 3 N × 0
axlowdimlem6.3 C = 1 0 2 1 3 N × 0
Assertion axlowdimlem6 N 2 ¬ A Btwn B C B Btwn C A C Btwn A B

Proof

Step Hyp Ref Expression
1 axlowdimlem6.1 A = 1 0 2 0 3 N × 0
2 axlowdimlem6.2 B = 1 1 2 0 3 N × 0
3 axlowdimlem6.3 C = 1 0 2 1 3 N × 0
4 1zzd N 2 1
5 eluzelz N 2 N
6 2nn 2
7 uznnssnn 2 2
8 6 7 ax-mp 2
9 nnuz = 1
10 8 9 sseqtri 2 1
11 10 sseli N 2 N 1
12 eluzle N 1 1 N
13 11 12 syl N 2 1 N
14 1re 1
15 14 leidi 1 1
16 13 15 jctil N 2 1 1 1 N
17 elfz4 1 N 1 1 1 1 N 1 1 N
18 4 5 4 16 17 syl31anc N 2 1 1 N
19 eluzel2 N 2 2
20 eluzle N 2 2 N
21 1le2 1 2
22 20 21 jctil N 2 1 2 2 N
23 elfz4 1 N 2 1 2 2 N 2 1 N
24 4 5 19 22 23 syl31anc N 2 2 1 N
25 ax-1ne0 1 0
26 1t1e1 1 1 = 1
27 0cn 0
28 27 mul01i 0 0 = 0
29 26 28 neeq12i 1 1 0 0 1 0
30 25 29 mpbir 1 1 0 0
31 fveq2 i = 1 1 1 2 0 3 N × 0 i = 1 1 2 0 3 N × 0 1
32 0re 0
33 14 32 axlowdimlem4 1 1 2 0 : 1 2
34 ffn 1 1 2 0 : 1 2 1 1 2 0 Fn 1 2
35 33 34 ax-mp 1 1 2 0 Fn 1 2
36 axlowdimlem1 3 N × 0 : 3 N
37 ffn 3 N × 0 : 3 N 3 N × 0 Fn 3 N
38 36 37 ax-mp 3 N × 0 Fn 3 N
39 axlowdimlem2 1 2 3 N =
40 1z 1
41 2z 2
42 40 41 40 3pm3.2i 1 2 1
43 15 21 pm3.2i 1 1 1 2
44 elfz4 1 2 1 1 1 1 2 1 1 2
45 42 43 44 mp2an 1 1 2
46 39 45 pm3.2i 1 2 3 N = 1 1 2
47 fvun1 1 1 2 0 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 1 1 2 1 1 2 0 3 N × 0 1 = 1 1 2 0 1
48 35 38 46 47 mp3an 1 1 2 0 3 N × 0 1 = 1 1 2 0 1
49 1ne2 1 2
50 1ex 1 V
51 50 50 fvpr1 1 2 1 1 2 0 1 = 1
52 49 51 ax-mp 1 1 2 0 1 = 1
53 48 52 eqtri 1 1 2 0 3 N × 0 1 = 1
54 31 53 eqtrdi i = 1 1 1 2 0 3 N × 0 i = 1
55 fveq2 i = 1 1 0 2 0 3 N × 0 i = 1 0 2 0 3 N × 0 1
56 32 32 axlowdimlem4 1 0 2 0 : 1 2
57 ffn 1 0 2 0 : 1 2 1 0 2 0 Fn 1 2
58 56 57 ax-mp 1 0 2 0 Fn 1 2
59 fvun1 1 0 2 0 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 1 1 2 1 0 2 0 3 N × 0 1 = 1 0 2 0 1
60 58 38 46 59 mp3an 1 0 2 0 3 N × 0 1 = 1 0 2 0 1
61 32 elexi 0 V
62 50 61 fvpr1 1 2 1 0 2 0 1 = 0
63 49 62 ax-mp 1 0 2 0 1 = 0
64 60 63 eqtri 1 0 2 0 3 N × 0 1 = 0
65 55 64 eqtrdi i = 1 1 0 2 0 3 N × 0 i = 0
66 54 65 oveq12d i = 1 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i = 1 0
67 1m0e1 1 0 = 1
68 66 67 eqtrdi i = 1 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i = 1
69 68 oveq1d i = 1 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j
70 fveq2 i = 1 1 0 2 1 3 N × 0 i = 1 0 2 1 3 N × 0 1
71 32 14 axlowdimlem4 1 0 2 1 : 1 2
72 ffn 1 0 2 1 : 1 2 1 0 2 1 Fn 1 2
73 71 72 ax-mp 1 0 2 1 Fn 1 2
74 fvun1 1 0 2 1 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 1 1 2 1 0 2 1 3 N × 0 1 = 1 0 2 1 1
75 73 38 46 74 mp3an 1 0 2 1 3 N × 0 1 = 1 0 2 1 1
76 50 61 fvpr1 1 2 1 0 2 1 1 = 0
77 49 76 ax-mp 1 0 2 1 1 = 0
78 75 77 eqtri 1 0 2 1 3 N × 0 1 = 0
79 70 78 eqtrdi i = 1 1 0 2 1 3 N × 0 i = 0
80 79 65 oveq12d i = 1 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i = 0 0
81 0m0e0 0 0 = 0
82 80 81 eqtrdi i = 1 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i = 0
83 82 oveq2d i = 1 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 0
84 69 83 neeq12d i = 1 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i 1 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 0
85 fveq2 j = 2 1 0 2 1 3 N × 0 j = 1 0 2 1 3 N × 0 2
86 40 41 41 3pm3.2i 1 2 2
87 2re 2
88 87 leidi 2 2
89 21 88 pm3.2i 1 2 2 2
90 elfz4 1 2 2 1 2 2 2 2 1 2
91 86 89 90 mp2an 2 1 2
92 39 91 pm3.2i 1 2 3 N = 2 1 2
93 fvun1 1 0 2 1 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 2 1 2 1 0 2 1 3 N × 0 2 = 1 0 2 1 2
94 73 38 92 93 mp3an 1 0 2 1 3 N × 0 2 = 1 0 2 1 2
95 41 elexi 2 V
96 95 50 fvpr2 1 2 1 0 2 1 2 = 1
97 49 96 ax-mp 1 0 2 1 2 = 1
98 94 97 eqtri 1 0 2 1 3 N × 0 2 = 1
99 85 98 eqtrdi j = 2 1 0 2 1 3 N × 0 j = 1
100 fveq2 j = 2 1 0 2 0 3 N × 0 j = 1 0 2 0 3 N × 0 2
101 fvun1 1 0 2 0 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 2 1 2 1 0 2 0 3 N × 0 2 = 1 0 2 0 2
102 58 38 92 101 mp3an 1 0 2 0 3 N × 0 2 = 1 0 2 0 2
103 95 61 fvpr2 1 2 1 0 2 0 2 = 0
104 49 103 ax-mp 1 0 2 0 2 = 0
105 102 104 eqtri 1 0 2 0 3 N × 0 2 = 0
106 100 105 eqtrdi j = 2 1 0 2 0 3 N × 0 j = 0
107 99 106 oveq12d j = 2 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 0
108 107 67 eqtrdi j = 2 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1
109 108 oveq2d j = 2 1 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1
110 fveq2 j = 2 1 1 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 2
111 fvun1 1 1 2 0 Fn 1 2 3 N × 0 Fn 3 N 1 2 3 N = 2 1 2 1 1 2 0 3 N × 0 2 = 1 1 2 0 2
112 35 38 92 111 mp3an 1 1 2 0 3 N × 0 2 = 1 1 2 0 2
113 95 61 fvpr2 1 2 1 1 2 0 2 = 0
114 49 113 ax-mp 1 1 2 0 2 = 0
115 112 114 eqtri 1 1 2 0 3 N × 0 2 = 0
116 110 115 eqtrdi j = 2 1 1 2 0 3 N × 0 j = 0
117 116 106 oveq12d j = 2 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j = 0 0
118 117 81 eqtrdi j = 2 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j = 0
119 118 oveq1d j = 2 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 0 = 0 0
120 109 119 neeq12d j = 2 1 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 0 1 1 0 0
121 84 120 rspc2ev 1 1 N 2 1 N 1 1 0 0 i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
122 30 121 mp3an3 1 1 N 2 1 N i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
123 18 24 122 syl2anc N 2 i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
124 df-ne 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i ¬ 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
125 124 rexbii j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i j 1 N ¬ 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
126 rexnal j 1 N ¬ 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i ¬ j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
127 125 126 bitri j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i ¬ j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
128 127 rexbii i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i i 1 N ¬ j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
129 rexnal i 1 N ¬ j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i ¬ i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
130 128 129 bitri i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i ¬ i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
131 123 130 sylib N 2 ¬ i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
132 32 32 axlowdimlem5 N 2 1 0 2 0 3 N × 0 𝔼 N
133 14 32 axlowdimlem5 N 2 1 1 2 0 3 N × 0 𝔼 N
134 32 14 axlowdimlem5 N 2 1 0 2 1 3 N × 0 𝔼 N
135 colinearalg 1 0 2 0 3 N × 0 𝔼 N 1 1 2 0 3 N × 0 𝔼 N 1 0 2 1 3 N × 0 𝔼 N 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
136 132 133 134 135 syl3anc N 2 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0 i 1 N j 1 N 1 1 2 0 3 N × 0 i 1 0 2 0 3 N × 0 i 1 0 2 1 3 N × 0 j 1 0 2 0 3 N × 0 j = 1 1 2 0 3 N × 0 j 1 0 2 0 3 N × 0 j 1 0 2 1 3 N × 0 i 1 0 2 0 3 N × 0 i
137 131 136 mtbird N 2 ¬ 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
138 2 3 opeq12i B C = 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
139 1 138 breq12i A Btwn B C 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0
140 3 1 opeq12i C A = 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
141 2 140 breq12i B Btwn C A 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0
142 1 2 opeq12i A B = 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
143 3 142 breq12i C Btwn A B 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
144 139 141 143 3orbi123i A Btwn B C B Btwn C A C Btwn A B 1 0 2 0 3 N × 0 Btwn 1 1 2 0 3 N × 0 1 0 2 1 3 N × 0 1 1 2 0 3 N × 0 Btwn 1 0 2 1 3 N × 0 1 0 2 0 3 N × 0 1 0 2 1 3 N × 0 Btwn 1 0 2 0 3 N × 0 1 1 2 0 3 N × 0
145 137 144 sylnibr N 2 ¬ A Btwn B C B Btwn C A C Btwn A B