| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem6.1 |  |-  A = ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) | 
						
							| 2 |  | axlowdimlem6.2 |  |-  B = ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) | 
						
							| 3 |  | axlowdimlem6.3 |  |-  C = ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) | 
						
							| 4 |  | 1zzd |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. ZZ ) | 
						
							| 5 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) | 
						
							| 6 |  | 2nn |  |-  2 e. NN | 
						
							| 7 |  | uznnssnn |  |-  ( 2 e. NN -> ( ZZ>= ` 2 ) C_ NN ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( ZZ>= ` 2 ) C_ NN | 
						
							| 9 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 10 | 8 9 | sseqtri |  |-  ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) | 
						
							| 11 | 10 | sseli |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 12 |  | eluzle |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 <_ N ) | 
						
							| 13 | 11 12 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 <_ N ) | 
						
							| 14 |  | 1re |  |-  1 e. RR | 
						
							| 15 | 14 | leidi |  |-  1 <_ 1 | 
						
							| 16 | 13 15 | jctil |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 <_ 1 /\ 1 <_ N ) ) | 
						
							| 17 |  | elfz4 |  |-  ( ( ( 1 e. ZZ /\ N e. ZZ /\ 1 e. ZZ ) /\ ( 1 <_ 1 /\ 1 <_ N ) ) -> 1 e. ( 1 ... N ) ) | 
						
							| 18 | 4 5 4 16 17 | syl31anc |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 19 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. ZZ ) | 
						
							| 20 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 21 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 22 | 20 21 | jctil |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 <_ 2 /\ 2 <_ N ) ) | 
						
							| 23 |  | elfz4 |  |-  ( ( ( 1 e. ZZ /\ N e. ZZ /\ 2 e. ZZ ) /\ ( 1 <_ 2 /\ 2 <_ N ) ) -> 2 e. ( 1 ... N ) ) | 
						
							| 24 | 4 5 19 22 23 | syl31anc |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. ( 1 ... N ) ) | 
						
							| 25 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 26 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 27 |  | 0cn |  |-  0 e. CC | 
						
							| 28 | 27 | mul01i |  |-  ( 0 x. 0 ) = 0 | 
						
							| 29 | 26 28 | neeq12i |  |-  ( ( 1 x. 1 ) =/= ( 0 x. 0 ) <-> 1 =/= 0 ) | 
						
							| 30 | 25 29 | mpbir |  |-  ( 1 x. 1 ) =/= ( 0 x. 0 ) | 
						
							| 31 |  | fveq2 |  |-  ( i = 1 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) | 
						
							| 32 |  | 0re |  |-  0 e. RR | 
						
							| 33 | 14 32 | axlowdimlem4 |  |-  { <. 1 , 1 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR | 
						
							| 34 |  | ffn |  |-  ( { <. 1 , 1 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) | 
						
							| 36 |  | axlowdimlem1 |  |-  ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR | 
						
							| 37 |  | ffn |  |-  ( ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR -> ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) ) | 
						
							| 38 | 36 37 | ax-mp |  |-  ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) | 
						
							| 39 |  | axlowdimlem2 |  |-  ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) | 
						
							| 40 |  | 1z |  |-  1 e. ZZ | 
						
							| 41 |  | 2z |  |-  2 e. ZZ | 
						
							| 42 | 40 41 40 | 3pm3.2i |  |-  ( 1 e. ZZ /\ 2 e. ZZ /\ 1 e. ZZ ) | 
						
							| 43 | 15 21 | pm3.2i |  |-  ( 1 <_ 1 /\ 1 <_ 2 ) | 
						
							| 44 |  | elfz4 |  |-  ( ( ( 1 e. ZZ /\ 2 e. ZZ /\ 1 e. ZZ ) /\ ( 1 <_ 1 /\ 1 <_ 2 ) ) -> 1 e. ( 1 ... 2 ) ) | 
						
							| 45 | 42 43 44 | mp2an |  |-  1 e. ( 1 ... 2 ) | 
						
							| 46 | 39 45 | pm3.2i |  |-  ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) | 
						
							| 47 |  | fvun1 |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) ) | 
						
							| 48 | 35 38 46 47 | mp3an |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) | 
						
							| 49 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 50 |  | 1ex |  |-  1 e. _V | 
						
							| 51 | 50 50 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) = 1 ) | 
						
							| 52 | 49 51 | ax-mp |  |-  ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) = 1 | 
						
							| 53 | 48 52 | eqtri |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 1 | 
						
							| 54 | 31 53 | eqtrdi |  |-  ( i = 1 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 1 ) | 
						
							| 55 |  | fveq2 |  |-  ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) | 
						
							| 56 | 32 32 | axlowdimlem4 |  |-  { <. 1 , 0 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR | 
						
							| 57 |  | ffn |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) ) | 
						
							| 58 | 56 57 | ax-mp |  |-  { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) | 
						
							| 59 |  | fvun1 |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) ) | 
						
							| 60 | 58 38 46 59 | mp3an |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) | 
						
							| 61 | 32 | elexi |  |-  0 e. _V | 
						
							| 62 | 50 61 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) | 
						
							| 63 | 49 62 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 | 
						
							| 64 | 60 63 | eqtri |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 0 | 
						
							| 65 | 55 64 | eqtrdi |  |-  ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 0 ) | 
						
							| 66 | 54 65 | oveq12d |  |-  ( i = 1 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = ( 1 - 0 ) ) | 
						
							| 67 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 68 | 66 67 | eqtrdi |  |-  ( i = 1 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = 1 ) | 
						
							| 69 | 68 | oveq1d |  |-  ( i = 1 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) ) | 
						
							| 70 |  | fveq2 |  |-  ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) | 
						
							| 71 | 32 14 | axlowdimlem4 |  |-  { <. 1 , 0 >. , <. 2 , 1 >. } : ( 1 ... 2 ) --> RR | 
						
							| 72 |  | ffn |  |-  ( { <. 1 , 0 >. , <. 2 , 1 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) ) | 
						
							| 73 | 71 72 | ax-mp |  |-  { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) | 
						
							| 74 |  | fvun1 |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) ) | 
						
							| 75 | 73 38 46 74 | mp3an |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) | 
						
							| 76 | 50 61 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) = 0 ) | 
						
							| 77 | 49 76 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) = 0 | 
						
							| 78 | 75 77 | eqtri |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 0 | 
						
							| 79 | 70 78 | eqtrdi |  |-  ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 0 ) | 
						
							| 80 | 79 65 | oveq12d |  |-  ( i = 1 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = ( 0 - 0 ) ) | 
						
							| 81 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 82 | 80 81 | eqtrdi |  |-  ( i = 1 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = 0 ) | 
						
							| 83 | 82 | oveq2d |  |-  ( i = 1 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) ) | 
						
							| 84 | 69 83 | neeq12d |  |-  ( i = 1 -> ( ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) ) ) | 
						
							| 85 |  | fveq2 |  |-  ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) | 
						
							| 86 | 40 41 41 | 3pm3.2i |  |-  ( 1 e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) | 
						
							| 87 |  | 2re |  |-  2 e. RR | 
						
							| 88 | 87 | leidi |  |-  2 <_ 2 | 
						
							| 89 | 21 88 | pm3.2i |  |-  ( 1 <_ 2 /\ 2 <_ 2 ) | 
						
							| 90 |  | elfz4 |  |-  ( ( ( 1 e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) /\ ( 1 <_ 2 /\ 2 <_ 2 ) ) -> 2 e. ( 1 ... 2 ) ) | 
						
							| 91 | 86 89 90 | mp2an |  |-  2 e. ( 1 ... 2 ) | 
						
							| 92 | 39 91 | pm3.2i |  |-  ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) | 
						
							| 93 |  | fvun1 |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) ) | 
						
							| 94 | 73 38 92 93 | mp3an |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) | 
						
							| 95 | 41 | elexi |  |-  2 e. _V | 
						
							| 96 | 95 50 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) = 1 ) | 
						
							| 97 | 49 96 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) = 1 | 
						
							| 98 | 94 97 | eqtri |  |-  ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 1 | 
						
							| 99 | 85 98 | eqtrdi |  |-  ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 1 ) | 
						
							| 100 |  | fveq2 |  |-  ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) | 
						
							| 101 |  | fvun1 |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) ) | 
						
							| 102 | 58 38 92 101 | mp3an |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) | 
						
							| 103 | 95 61 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) | 
						
							| 104 | 49 103 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 | 
						
							| 105 | 102 104 | eqtri |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 0 | 
						
							| 106 | 100 105 | eqtrdi |  |-  ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 0 ) | 
						
							| 107 | 99 106 | oveq12d |  |-  ( j = 2 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = ( 1 - 0 ) ) | 
						
							| 108 | 107 67 | eqtrdi |  |-  ( j = 2 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = 1 ) | 
						
							| 109 | 108 | oveq2d |  |-  ( j = 2 -> ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( 1 x. 1 ) ) | 
						
							| 110 |  | fveq2 |  |-  ( j = 2 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) | 
						
							| 111 |  | fvun1 |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) ) | 
						
							| 112 | 35 38 92 111 | mp3an |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) | 
						
							| 113 | 95 61 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) = 0 ) | 
						
							| 114 | 49 113 | ax-mp |  |-  ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) = 0 | 
						
							| 115 | 112 114 | eqtri |  |-  ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 0 | 
						
							| 116 | 110 115 | eqtrdi |  |-  ( j = 2 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 0 ) | 
						
							| 117 | 116 106 | oveq12d |  |-  ( j = 2 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = ( 0 - 0 ) ) | 
						
							| 118 | 117 81 | eqtrdi |  |-  ( j = 2 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = 0 ) | 
						
							| 119 | 118 | oveq1d |  |-  ( j = 2 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) = ( 0 x. 0 ) ) | 
						
							| 120 | 109 119 | neeq12d |  |-  ( j = 2 -> ( ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) <-> ( 1 x. 1 ) =/= ( 0 x. 0 ) ) ) | 
						
							| 121 | 84 120 | rspc2ev |  |-  ( ( 1 e. ( 1 ... N ) /\ 2 e. ( 1 ... N ) /\ ( 1 x. 1 ) =/= ( 0 x. 0 ) ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 122 | 30 121 | mp3an3 |  |-  ( ( 1 e. ( 1 ... N ) /\ 2 e. ( 1 ... N ) ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 123 | 18 24 122 | syl2anc |  |-  ( N e. ( ZZ>= ` 2 ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 124 |  | df-ne |  |-  ( ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 125 | 124 | rexbii |  |-  ( E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> E. j e. ( 1 ... N ) -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 126 |  | rexnal |  |-  ( E. j e. ( 1 ... N ) -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 127 | 125 126 | bitri |  |-  ( E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 128 | 127 | rexbii |  |-  ( E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> E. i e. ( 1 ... N ) -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 129 |  | rexnal |  |-  ( E. i e. ( 1 ... N ) -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 130 | 128 129 | bitri |  |-  ( E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 131 | 123 130 | sylib |  |-  ( N e. ( ZZ>= ` 2 ) -> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) | 
						
							| 132 | 32 32 | axlowdimlem5 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) | 
						
							| 133 | 14 32 | axlowdimlem5 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) | 
						
							| 134 | 32 14 | axlowdimlem5 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) | 
						
							| 135 |  | colinearalg |  |-  ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) /\ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) /\ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) -> ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) <-> A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) ) | 
						
							| 136 | 132 133 134 135 | syl3anc |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) <-> A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) ) | 
						
							| 137 | 131 136 | mtbird |  |-  ( N e. ( ZZ>= ` 2 ) -> -. ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) ) | 
						
							| 138 | 2 3 | opeq12i |  |-  <. B , C >. = <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. | 
						
							| 139 | 1 138 | breq12i |  |-  ( A Btwn <. B , C >. <-> ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) | 
						
							| 140 | 3 1 | opeq12i |  |-  <. C , A >. = <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. | 
						
							| 141 | 2 140 | breq12i |  |-  ( B Btwn <. C , A >. <-> ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) | 
						
							| 142 | 1 2 | opeq12i |  |-  <. A , B >. = <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. | 
						
							| 143 | 3 142 | breq12i |  |-  ( C Btwn <. A , B >. <-> ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) | 
						
							| 144 | 139 141 143 | 3orbi123i |  |-  ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) ) | 
						
							| 145 | 137 144 | sylnibr |  |-  ( N e. ( ZZ>= ` 2 ) -> -. ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) |