Step |
Hyp |
Ref |
Expression |
1 |
|
axlowdimlem6.1 |
|- A = ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) |
2 |
|
axlowdimlem6.2 |
|- B = ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) |
3 |
|
axlowdimlem6.3 |
|- C = ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) |
4 |
|
1zzd |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. ZZ ) |
5 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
6 |
|
2nn |
|- 2 e. NN |
7 |
|
uznnssnn |
|- ( 2 e. NN -> ( ZZ>= ` 2 ) C_ NN ) |
8 |
6 7
|
ax-mp |
|- ( ZZ>= ` 2 ) C_ NN |
9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
10 |
8 9
|
sseqtri |
|- ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) |
11 |
10
|
sseli |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ( ZZ>= ` 1 ) ) |
12 |
|
eluzle |
|- ( N e. ( ZZ>= ` 1 ) -> 1 <_ N ) |
13 |
11 12
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> 1 <_ N ) |
14 |
|
1re |
|- 1 e. RR |
15 |
14
|
leidi |
|- 1 <_ 1 |
16 |
13 15
|
jctil |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 <_ 1 /\ 1 <_ N ) ) |
17 |
|
elfz4 |
|- ( ( ( 1 e. ZZ /\ N e. ZZ /\ 1 e. ZZ ) /\ ( 1 <_ 1 /\ 1 <_ N ) ) -> 1 e. ( 1 ... N ) ) |
18 |
4 5 4 16 17
|
syl31anc |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. ( 1 ... N ) ) |
19 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. ZZ ) |
20 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
21 |
|
1le2 |
|- 1 <_ 2 |
22 |
20 21
|
jctil |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
23 |
|
elfz4 |
|- ( ( ( 1 e. ZZ /\ N e. ZZ /\ 2 e. ZZ ) /\ ( 1 <_ 2 /\ 2 <_ N ) ) -> 2 e. ( 1 ... N ) ) |
24 |
4 5 19 22 23
|
syl31anc |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. ( 1 ... N ) ) |
25 |
|
ax-1ne0 |
|- 1 =/= 0 |
26 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
27 |
|
0cn |
|- 0 e. CC |
28 |
27
|
mul01i |
|- ( 0 x. 0 ) = 0 |
29 |
26 28
|
neeq12i |
|- ( ( 1 x. 1 ) =/= ( 0 x. 0 ) <-> 1 =/= 0 ) |
30 |
25 29
|
mpbir |
|- ( 1 x. 1 ) =/= ( 0 x. 0 ) |
31 |
|
fveq2 |
|- ( i = 1 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) |
32 |
|
0re |
|- 0 e. RR |
33 |
14 32
|
axlowdimlem4 |
|- { <. 1 , 1 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR |
34 |
|
ffn |
|- ( { <. 1 , 1 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) ) |
35 |
33 34
|
ax-mp |
|- { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) |
36 |
|
axlowdimlem1 |
|- ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR |
37 |
|
ffn |
|- ( ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR -> ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) ) |
38 |
36 37
|
ax-mp |
|- ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) |
39 |
|
axlowdimlem2 |
|- ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) |
40 |
|
1z |
|- 1 e. ZZ |
41 |
|
2z |
|- 2 e. ZZ |
42 |
40 41 40
|
3pm3.2i |
|- ( 1 e. ZZ /\ 2 e. ZZ /\ 1 e. ZZ ) |
43 |
15 21
|
pm3.2i |
|- ( 1 <_ 1 /\ 1 <_ 2 ) |
44 |
|
elfz4 |
|- ( ( ( 1 e. ZZ /\ 2 e. ZZ /\ 1 e. ZZ ) /\ ( 1 <_ 1 /\ 1 <_ 2 ) ) -> 1 e. ( 1 ... 2 ) ) |
45 |
42 43 44
|
mp2an |
|- 1 e. ( 1 ... 2 ) |
46 |
39 45
|
pm3.2i |
|- ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) |
47 |
|
fvun1 |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) ) |
48 |
35 38 46 47
|
mp3an |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) |
49 |
|
1ne2 |
|- 1 =/= 2 |
50 |
|
1ex |
|- 1 e. _V |
51 |
50 50
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) = 1 ) |
52 |
49 51
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 1 ) = 1 |
53 |
48 52
|
eqtri |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 1 |
54 |
31 53
|
eqtrdi |
|- ( i = 1 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 1 ) |
55 |
|
fveq2 |
|- ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) |
56 |
32 32
|
axlowdimlem4 |
|- { <. 1 , 0 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR |
57 |
|
ffn |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) ) |
58 |
56 57
|
ax-mp |
|- { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) |
59 |
|
fvun1 |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) ) |
60 |
58 38 46 59
|
mp3an |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) |
61 |
32
|
elexi |
|- 0 e. _V |
62 |
50 61
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) |
63 |
49 62
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 |
64 |
60 63
|
eqtri |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 0 |
65 |
55 64
|
eqtrdi |
|- ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 0 ) |
66 |
54 65
|
oveq12d |
|- ( i = 1 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = ( 1 - 0 ) ) |
67 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
68 |
66 67
|
eqtrdi |
|- ( i = 1 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = 1 ) |
69 |
68
|
oveq1d |
|- ( i = 1 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) ) |
70 |
|
fveq2 |
|- ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) ) |
71 |
32 14
|
axlowdimlem4 |
|- { <. 1 , 0 >. , <. 2 , 1 >. } : ( 1 ... 2 ) --> RR |
72 |
|
ffn |
|- ( { <. 1 , 0 >. , <. 2 , 1 >. } : ( 1 ... 2 ) --> RR -> { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) ) |
73 |
71 72
|
ax-mp |
|- { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) |
74 |
|
fvun1 |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 1 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) ) |
75 |
73 38 46 74
|
mp3an |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) |
76 |
50 61
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) = 0 ) |
77 |
49 76
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 1 ) = 0 |
78 |
75 77
|
eqtri |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 1 ) = 0 |
79 |
70 78
|
eqtrdi |
|- ( i = 1 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = 0 ) |
80 |
79 65
|
oveq12d |
|- ( i = 1 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = ( 0 - 0 ) ) |
81 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
82 |
80 81
|
eqtrdi |
|- ( i = 1 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) = 0 ) |
83 |
82
|
oveq2d |
|- ( i = 1 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) ) |
84 |
69 83
|
neeq12d |
|- ( i = 1 -> ( ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) ) ) |
85 |
|
fveq2 |
|- ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) |
86 |
40 41 41
|
3pm3.2i |
|- ( 1 e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) |
87 |
|
2re |
|- 2 e. RR |
88 |
87
|
leidi |
|- 2 <_ 2 |
89 |
21 88
|
pm3.2i |
|- ( 1 <_ 2 /\ 2 <_ 2 ) |
90 |
|
elfz4 |
|- ( ( ( 1 e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) /\ ( 1 <_ 2 /\ 2 <_ 2 ) ) -> 2 e. ( 1 ... 2 ) ) |
91 |
86 89 90
|
mp2an |
|- 2 e. ( 1 ... 2 ) |
92 |
39 91
|
pm3.2i |
|- ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) |
93 |
|
fvun1 |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) ) |
94 |
73 38 92 93
|
mp3an |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) |
95 |
41
|
elexi |
|- 2 e. _V |
96 |
95 50
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) = 1 ) |
97 |
49 96
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 1 >. } ` 2 ) = 1 |
98 |
94 97
|
eqtri |
|- ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 1 |
99 |
85 98
|
eqtrdi |
|- ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 1 ) |
100 |
|
fveq2 |
|- ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) |
101 |
|
fvun1 |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) ) |
102 |
58 38 92 101
|
mp3an |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) |
103 |
95 61
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
104 |
49 103
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 |
105 |
102 104
|
eqtri |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 0 |
106 |
100 105
|
eqtrdi |
|- ( j = 2 -> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 0 ) |
107 |
99 106
|
oveq12d |
|- ( j = 2 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = ( 1 - 0 ) ) |
108 |
107 67
|
eqtrdi |
|- ( j = 2 -> ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = 1 ) |
109 |
108
|
oveq2d |
|- ( j = 2 -> ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( 1 x. 1 ) ) |
110 |
|
fveq2 |
|- ( j = 2 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) ) |
111 |
|
fvun1 |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ 2 e. ( 1 ... 2 ) ) ) -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) ) |
112 |
35 38 92 111
|
mp3an |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) |
113 |
95 61
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
114 |
49 113
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , 0 >. } ` 2 ) = 0 |
115 |
112 114
|
eqtri |
|- ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` 2 ) = 0 |
116 |
110 115
|
eqtrdi |
|- ( j = 2 -> ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) = 0 ) |
117 |
116 106
|
oveq12d |
|- ( j = 2 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = ( 0 - 0 ) ) |
118 |
117 81
|
eqtrdi |
|- ( j = 2 -> ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) = 0 ) |
119 |
118
|
oveq1d |
|- ( j = 2 -> ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) = ( 0 x. 0 ) ) |
120 |
109 119
|
neeq12d |
|- ( j = 2 -> ( ( 1 x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. 0 ) <-> ( 1 x. 1 ) =/= ( 0 x. 0 ) ) ) |
121 |
84 120
|
rspc2ev |
|- ( ( 1 e. ( 1 ... N ) /\ 2 e. ( 1 ... N ) /\ ( 1 x. 1 ) =/= ( 0 x. 0 ) ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
122 |
30 121
|
mp3an3 |
|- ( ( 1 e. ( 1 ... N ) /\ 2 e. ( 1 ... N ) ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
123 |
18 24 122
|
syl2anc |
|- ( N e. ( ZZ>= ` 2 ) -> E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
124 |
|
df-ne |
|- ( ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
125 |
124
|
rexbii |
|- ( E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> E. j e. ( 1 ... N ) -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
126 |
|
rexnal |
|- ( E. j e. ( 1 ... N ) -. ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
127 |
125 126
|
bitri |
|- ( E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
128 |
127
|
rexbii |
|- ( E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> E. i e. ( 1 ... N ) -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
129 |
|
rexnal |
|- ( E. i e. ( 1 ... N ) -. A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
130 |
128 129
|
bitri |
|- ( E. i e. ( 1 ... N ) E. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) =/= ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) <-> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
131 |
123 130
|
sylib |
|- ( N e. ( ZZ>= ` 2 ) -> -. A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) |
132 |
32 32
|
axlowdimlem5 |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |
133 |
14 32
|
axlowdimlem5 |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |
134 |
32 14
|
axlowdimlem5 |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |
135 |
|
colinearalg |
|- ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) /\ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) /\ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) -> ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) <-> A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) ) |
136 |
132 133 134 135
|
syl3anc |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) <-> A. i e. ( 1 ... N ) A. j e. ( 1 ... N ) ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) ) = ( ( ( ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` j ) ) x. ( ( ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) - ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) ) ) ) ) |
137 |
131 136
|
mtbird |
|- ( N e. ( ZZ>= ` 2 ) -> -. ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) ) |
138 |
2 3
|
opeq12i |
|- <. B , C >. = <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. |
139 |
1 138
|
breq12i |
|- ( A Btwn <. B , C >. <-> ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) |
140 |
3 1
|
opeq12i |
|- <. C , A >. = <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. |
141 |
2 140
|
breq12i |
|- ( B Btwn <. C , A >. <-> ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) |
142 |
1 2
|
opeq12i |
|- <. A , B >. = <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. |
143 |
3 142
|
breq12i |
|- ( C Btwn <. A , B >. <-> ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) |
144 |
139 141 143
|
3orbi123i |
|- ( ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) <-> ( ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. \/ ( { <. 1 , 0 >. , <. 2 , 1 >. } u. ( ( 3 ... N ) X. { 0 } ) ) Btwn <. ( { <. 1 , 0 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) , ( { <. 1 , 1 >. , <. 2 , 0 >. } u. ( ( 3 ... N ) X. { 0 } ) ) >. ) ) |
145 |
137 144
|
sylnibr |
|- ( N e. ( ZZ>= ` 2 ) -> -. ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) |