| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem4.1 |  |-  A e. RR | 
						
							| 2 |  | axlowdimlem4.2 |  |-  B e. RR | 
						
							| 3 | 1 2 | axlowdimlem4 |  |-  { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR | 
						
							| 4 |  | axlowdimlem1 |  |-  ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR | 
						
							| 5 | 3 4 | pm3.2i |  |-  ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR /\ ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR ) | 
						
							| 6 |  | axlowdimlem2 |  |-  ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) | 
						
							| 7 |  | fun2 |  |-  ( ( ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR /\ ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR ) /\ ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR | 
						
							| 9 |  | axlowdimlem3 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) | 
						
							| 10 | 9 | feq2d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR ) ) | 
						
							| 11 | 8 10 | mpbiri |  |-  ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) | 
						
							| 12 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 13 |  | elee |  |-  ( N e. NN -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) | 
						
							| 15 | 11 14 | mpbird |  |-  ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |