Metamath Proof Explorer


Theorem axlowdimlem5

Description: Lemma for axlowdim . Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypotheses axlowdimlem4.1 A
axlowdimlem4.2 B
Assertion axlowdimlem5 N 2 1 A 2 B 3 N × 0 𝔼 N

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 A
2 axlowdimlem4.2 B
3 1 2 axlowdimlem4 1 A 2 B : 1 2
4 axlowdimlem1 3 N × 0 : 3 N
5 3 4 pm3.2i 1 A 2 B : 1 2 3 N × 0 : 3 N
6 axlowdimlem2 1 2 3 N =
7 fun2 1 A 2 B : 1 2 3 N × 0 : 3 N 1 2 3 N = 1 A 2 B 3 N × 0 : 1 2 3 N
8 5 6 7 mp2an 1 A 2 B 3 N × 0 : 1 2 3 N
9 axlowdimlem3 N 2 1 N = 1 2 3 N
10 9 feq2d N 2 1 A 2 B 3 N × 0 : 1 N 1 A 2 B 3 N × 0 : 1 2 3 N
11 8 10 mpbiri N 2 1 A 2 B 3 N × 0 : 1 N
12 eluz2nn N 2 N
13 elee N 1 A 2 B 3 N × 0 𝔼 N 1 A 2 B 3 N × 0 : 1 N
14 12 13 syl N 2 1 A 2 B 3 N × 0 𝔼 N 1 A 2 B 3 N × 0 : 1 N
15 11 14 mpbird N 2 1 A 2 B 3 N × 0 𝔼 N