Metamath Proof Explorer


Theorem fun2

Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion fun2 F:ACG:BCAB=FG:ABC

Proof

Step Hyp Ref Expression
1 fun F:ACG:BCAB=FG:ABCC
2 unidm CC=C
3 feq3 CC=CFG:ABCCFG:ABC
4 2 3 ax-mp FG:ABCCFG:ABC
5 1 4 sylib F:ACG:BCAB=FG:ABC