Metamath Proof Explorer


Theorem axlowdimlem4

Description: Lemma for axlowdim . Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013)

Ref Expression
Hypotheses axlowdimlem4.1 A
axlowdimlem4.2 B
Assertion axlowdimlem4 1 A 2 B : 1 2

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 A
2 axlowdimlem4.2 B
3 1ne2 1 2
4 1ex 1 V
5 2ex 2 V
6 1 elexi A V
7 2 elexi B V
8 4 5 6 7 fpr 1 2 1 A 2 B : 1 2 A B
9 3 8 ax-mp 1 A 2 B : 1 2 A B
10 fz12pr 1 2 = 1 2
11 10 feq2i 1 A 2 B : 1 2 A B 1 A 2 B : 1 2 A B
12 9 11 mpbir 1 A 2 B : 1 2 A B
13 1 2 pm3.2i A B
14 6 7 prss A B A B
15 13 14 mpbi A B
16 fss 1 A 2 B : 1 2 A B A B 1 A 2 B : 1 2
17 12 15 16 mp2an 1 A 2 B : 1 2