| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axlowdimlem4.1 |  |-  A e. RR | 
						
							| 2 |  | axlowdimlem4.2 |  |-  B e. RR | 
						
							| 3 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 4 |  | 1ex |  |-  1 e. _V | 
						
							| 5 |  | 2ex |  |-  2 e. _V | 
						
							| 6 | 1 | elexi |  |-  A e. _V | 
						
							| 7 | 2 | elexi |  |-  B e. _V | 
						
							| 8 | 4 5 6 7 | fpr |  |-  ( 1 =/= 2 -> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } ) | 
						
							| 9 | 3 8 | ax-mp |  |-  { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } | 
						
							| 10 |  | fz12pr |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 11 | 10 | feq2i |  |-  ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } <-> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } ) | 
						
							| 12 | 9 11 | mpbir |  |-  { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } | 
						
							| 13 | 1 2 | pm3.2i |  |-  ( A e. RR /\ B e. RR ) | 
						
							| 14 | 6 7 | prss |  |-  ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) | 
						
							| 15 | 13 14 | mpbi |  |-  { A , B } C_ RR | 
						
							| 16 |  | fss |  |-  ( ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } /\ { A , B } C_ RR ) -> { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR ) | 
						
							| 17 | 12 15 16 | mp2an |  |-  { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR |